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Abstract ─ A redundant loop basis is proposed and 
applied as the solenoidal part of the recently 
developed multiresolution (MR) basis for closed 
surfaces at low frequencies. By keeping all loop 
basis functions, the “symmetry” of the MR 
solenoidal basis can be maintained for closed 
surfaces. As a consequence, the convergence of 
iterative solvers for the expanded MR basis can be 
effectively improved by using the redundant loop 
basis without disturbing the accuracy of results. 
Since the expanded MR basis functions are linear 
combinations of standard Rao-Wilton-Glisson 
(RWG) functions, it can be applied to the existing 
MoM codes easily. The positive behavior of 
redundant loop basis on MR basis for closed 
surfaces is analyzed and discussed in detail in this 
paper. Numerical results demonstrate that the 
expanded MR basis performs better than the 
original MR basis and has significant advantages 
over the traditional loop-tree basis for 3D 
electromagnetic scattering of closed structures in 
the low frequency range.  
  
Index Terms ─ Electromagnetic scattering, low 
frequency, method of moments (MoM), 
multiresolution techniques. 
 

I. INTRODUCTION 
The method of moments (MoM) solution of 

the electric field integral equation (EFIE) is 
always preferred for analysis of 3D 
electromagnetic scattering problems [1]. However, 

the EFIE suffers from the low-frequency 
breakdown problem when using the well known 
Rao–Wilton–Glisson (RWG) basis [2], which is 
associated with the poorly-conditioned MoM 
matrix when the frequency tends to zero. As a 
consequence, the MoM matrix is hard to get 
convergence and even not solvable with iterative 
solvers. The solution to prevent the low-frequency 
breakdown problem is to extract the solenoidal 
part of the current [3-10], thus the loop-tree/star 
basis is proposed for this purpose. The 
multiresolution (MR) basis developed in recent 
years provides a more effective basis than the 
loop-tree/star basis [11-14]. More recently, an 
alternative MR basis was proposed for analysis of 
low-frequency problems [15, 16]. Compared with 
the MR basis in [11-14], the MR basis in [15, 16] 
can be constructed much easier and provides more 
direct physical meanings. 

A simple and direct way of generating the 
solenoidal MR basis is taking the loop basis in the 
loop-tree/star basis as the solenoidal MR basis 
[12]. In the loop basis, each loop basis function 
corresponds to an interior vertex of surfaces. 
However, the loop basis is “asymmetry” for closed 
surfaces, since one loop associated to one arbitrary 
vertex must be eliminated. As pointed in [14], this 
“asymmetry” of loop basis for closed surfaces will 
cause the bad conditioning of the corresponding 
MoM matrix. To remedy the shortcoming of the 
loop basis, a novel, symmetrical solenoidal basis 
was proposed in [14]. The proposed solenoidal 
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basis is generated by applying the singular value 
decomposition (SVD) to local small “charge” 
matrices and it generates a well-conditioned MoM 
matrix. Alternatively, we propose a simple way to 
improve the conditioning of the loop basis for 
closed surfaces, i.e. taking a redundant loop basis 
as the solenoidal part of the MR basis. By keeping 
all loop basis functions, the “symmetry” of loop 
basis is kept. Also, as pointed in [18] that the 
redundant loop basis gives more freedom for the 
solution of flux to converge. Therefore, the 
application of the redundant loop basis to MR 
basis gives better convergence. 
 

II. MULTIRESOLUTION BASIS 
Due to the fact that MR basis possesses some 

degree of Fourier spectral resolution, the condition 
number of the corresponding MoM matrix can be 
drastically reduced with a diagonal 
preconditioning [17]. Therefore, MR basis has 
significant advantage than the classical loop-
tree/star basis for analysis of low-frequency 
problems. Since the improvement of the MR basis 
in [15, 16] for closed surfaces is mainly concerned 
in this paper, the essential concepts of the MR 
basis are briefly described in this section. 

 
A. Generalized mesh and generalized RWG 
basis 

As proposed in [12], the generalized mesh and 
generalized RWG (gRWG) basis is the two basic 
concepts in generating the MR basis. The MR 
basis functions are constructed on the hierarchical 
generalized meshes and generated as the linear 
combinations of the gRWG basis functions. The 
hierarchical generalized meshes are generated via 
a grouping algorithm (e.g. a sophisticated 
algorithm in [13]) and starts from the level-0 
mesh, i.e. the input triangular mesh. In the 
subsequent procedure of the grouping algorithm, 
each cell of level-l (l≥1) mesh is constructed by 
grouping about four near cells of level-(l-1) mesh. 
Finally, the mesh of the highest level is decided by 
the size of its cells, i.e. the size of the cells should 
be smaller than the wavelength of the incident EM 
wave. An example of four levels of hierarchical 
generalized meshes generated by the grouping 
algorithm is depicted in Fig. 1. The gRWG basis 
functions of each level are defined on the mesh of 
the corresponding level. Similar to the RWG basis 
function, each gRWG basis function of level-l 

mesh is defined on a pair of cells of level-l. 
Denoting a gRWG basis function of level-l 
with )(rRl

i


, the divergence of the gRWG basis 
function is given as 

, ,

, ,( )

0 otherwise,

l l l
i i i

l l l l
s i i i i

A r C
R r A r C

 

 

 


    




             (1) 

where l
iA ,  and l

iA ,  are the area of the two 
adjacent cells l

iC ,  and l
iC , , and l

i  is the common 
side of the two cells. 
 

 
Fig. 1. An example of four levels hierarchical 
generalized meshes. (a) Level-0 mesh, (b) level-1 
mesh, (c) level-2 mesh, (d) level-3 mesh. 

 
B. Generation of MR basis 

The MR basis is split into the solenoidal and 
nonsolenoidal parts. The solenoidal and 
nonsolenoidal functions of the MR basis span the 
same space as for the loop-tree/star basis. For a 
general 3-D surface, the number of solenoidal 
functions NS and the number of nonsolenoidal 
functions NX of the MR basis are given by [12, 16] 

int 1,SN V N                            (2) 
1,XN F                             (3) 

where Vint, NГ, F denote the number of internal 
vertices, separated boundary contours, and 
triangular faces, respectively. Obviously, the 
number of the solenoidal functions equals the 
number of the vertices minus one for closed 
surfaces. 
 

(a) (b) 

(c) (d) 
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1). Solenoidal Basis 
A simple way of constructing the solenoidal 

part of the MR basis is taking the traditional loop 
basis as the solenoidal basis, since a non-
hierarchical loop basis suffices to obtain well 
conditioned MoM matrices for low-frequency 
problems [12]. However, one loop basis function 
should be eliminated for closed surfaces according 
to (2). 

 
2). Nonsolenoidal Basis 

The nonsolenoidal part of MR basis is a 
hierarchical basis constructed on the hierarchical 
meshes. The nonsolenoidal basis first proposed in 
[12] is constructed via a rank-revealing QR 
decomposition. However, this approach requires 
the cells of the structure to be finally grouped into 
a single big cell. As a consequence, the 
regularizing property of the MR basis may be 
destroyed. To remedy this problem, a different 
approach is proposed in [13, 14], where the 
nonsolenoidal basis is constructed using SVD on 
small charge matrices and the cells of the highest 
level are smaller than the working wavelength. 
Nevertheless, the above approaches in generating 
of the MR basis rely on the indirect mathematical 
operations. Alternatively, a nonsolenoidal basis 
can be much easier to construct and comprehend 
in theory as proposed in [15, 16]. 

The generation of the nonsolenoidal functions 
of the highest level (level-L) is different from the 
functions of the other levels. Similar to the 
generation of the tree basis in the classical loop-
tree basis, the nonsolenoidal functions of level-L 
are generated by connecting all the cells of level-L 
mesh in a tree. An example of the level-L 
nonsolenoidal functions is shown in Fig. 2 (a), in 
which the nonsolenoidal functions are depicted 
with bold black lines. The nonsolenoidal functions 
of level-l (l<L) are the union of the functions 
constructed on the trees in all the level-(l+1) cells. 
An example of the nonsolenoidal functions of 
level-l is shown in Fig. 2 (b). 

 
Fig. 2. Examples of the nonsolenoidal functions. 
(a) the level-L nonsolenoidal functions, (b) the 
level-l (l<L) nonsolenoidal functions. 
 

III. REDUNDANT LOOP BASIS 
Although the MR basis in [12, 15] is very 

effective for analysis of low-frequency problems, 
the “asymmetry” is still remained in the solenoidal 
part of the MR basis for closed surfaces. To 
maintain the “symmetry” of the solenoidal MR 
basis, all loop basis functions are proposed to be 
kept in the solenoidal MR basis, i.e. no solenoidal 
MR basis function associated to the interior vertex 
of closed surfaces need to be eliminated. As a 
result, the conditioning of the MoM matrix of the 
expanded MR basis can be improved. The 
redundant loop basis’ property and its application 
to MR basis are investigated in this section. 
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Fig. 3. The 2-norm condition number of MoM 
submatrices of a metallic sphere (radius = 1 m) 
discretized with different number of unknowns 
using different solenoidal bases at 1 MHz. 
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A. Property of redundant loop basis 
Firstly, the 2-norm condition number of MoM 

solenoidal submatrix of different solenoidal bases 
with different discretization density is analyzed. 
As an example, the 2-norm condition number of 
MoM submatrices (after diagonal preconditioning) 
of a metallic sphere with a radius of 1 m 
discretized with the number of unknowns from 
about 200 to 2200 at the frequency of 1MHz is 
shown in Fig. 3. The LSV and SVD depicted in 
Fig. 3 represent the solenoidal bases generated 
from local SVD and SVD operations on charge 
matrices, respectively [14]. The 2-norm condition 
number of the redundant loop basis (denoted with 
r-loop in Fig. 3) is stated as the ratio of the largest 
singular value to the smallest nonzero singular 
value here. It can be found from Fig. 3 that the 2-
norm condition number increases very fast as the 
number of unknowns increases for loop basis, 
while it performs more stable for the other 
solenoidal bases. The same phenomenon of the 
above solenoidal bases (except the redundant loop 
basis) is reported in [14], where the worse 
behavior of loop basis is explained. It is very 
interesting to be observed from Fig. 3 that the 2-
norm condition number of the redundant loop 
basis is even smaller than that of SVD solenoidal 
basis. It is reasonable, since SVD solenoidal basis 
functions are not really orthogonal to each other 
although their divergences do. 

To give a more direct illustration of the 
performance for the above solenoidal bases, Fig. 4 
gives the eigenvalue distribution of MoM 
solenoidal submatrices (after diagonal 
preconditioning) in the case of the sphere 
discretized with 216 unknowns. It can be found 
from Fig. 4 (a) that the eigenvalues of SVD 
solenoidal basis are more closely clustered than 
that of LSV solenoidal basis, which indicates the 
MoM submatrix of SVD solenoidal basis has 
better conditioning than that of LSV solenoidal 
basis. By comparing Fig. 4 (a) and (b), it can be 
found that the eigenvalues of loop basis are more 
closely clustered than that of SVD solenoidal basis 
except there is an eigenvalue very close to zero. 
The eigenvalue of loop basis closest to zero is 
supposed to be the origin of the worse condition 
number for the matrix of loop basis compared with 
that of SVD solenoidal basis. Luckily, the 
redundant loop basis removes this eigenvalue to 
zero. As a result, the conditioning of the MoM 

solenoidal submatrix can be greatly improved. An 
explanation of the relation between the eigenvalue 
distribution of a matrix and the convergence of 
iterative solvers in solving the matrix can be found 
in [19]. 

 

 
Fig. 4. The eigenvalue distribution of MoM 
solenoidal submatrices of the sphere discretized 
with 216 unknowns using different solenoidal 
bases at 1 MHz. (a) SVD and LSV solenoidal 
bases, (b) loop and redundant loop bases. 
 

From the above discussion for the property of 
the redundant loop basis, it can be concluded that 
the redundant loop basis can remove the 
eigenvalue of its corresponding MoM submatrix 
closest to zero to zero and hence to form a well-
conditioned MoM submatrix.  
 
B. Application of redundant loop basis to MR 
basis 

It has been discussed in Section II-B that the 
MR basis can take loop basis as its solenoidal part. 
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In order to improve the conditioning of the MoM 
matrix of the MR basis for closed structures, the 
redundant loop basis is proposed to be taken as the 
solenoidal part of the MR basis. To demonstrate 
the performance of the redundant loop basis in MR 
basis, it is compared with the MR bases which 
take the other solenoidal bases as their solenoidal 
part. Also, the application of the redundant loop 
basis in the MR basis is compared with its 
application in loop-tree basis. 
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Fig. 5. The 2-norm condition number of MoM 
matrices of the sphere discretized with a different 
number of unknowns using different bases at 1 
MHz. 

 
Firstly, the 2-norm condition number of the MoM 
matrices of MR bases with different solenoidal 
parts and the loop-tree bases with loop or 
redundant loop solenoidal part is analyzed. The 2-
norm condition number of the MoM matrices of 
these bases in the example of the sphere described 
above is depicted in Fig. 5. It can be observed 
from Fig. 5 that the 2-norm condition number of 
the MR basis with redundant loop solenoidal part 
is much lower than that of the MR basis with loop 
solenoidal part, while the 2-norm condition 
number of the loop-tree basis with loop solenoidal 
part (denoted with loop-tree in Fig. 5) is almost 
equal to that of the loop-tree basis with redundant 
loop solenoidal part (denoted with r-loop-tree in 
Fig. 5). It can also be observed from Fig. 5 that the 
2-norm condition number of the MR basis with 
LSV solenoidal part is lower than the loop-tree 
basis and the MR basis with SVD solenoidal part 
is lower than the MR basis with LSV solenoidal 

part. However, the SVD solenoidal basis is 
generated by the SVD operations on the large 
charge matrix formed from all unknowns, which is 
prohibitive for a large number of unknowns due to 
the huge computational cost. 

 

 
Fig. 6. The eigenvalue distribution of MoM 
matrices of the sphere discretized with 216 
unknowns using different bases at 1 MHz. (a) 
Loop-tree bases with loop or redundant loop 
solenoidal part, (b) MR bases with LSV or SVD 
solenoidal part, (c) MR bases with loop or 
redundant loop solenoidal part. 
 

Since the convergence behavior of iterative 
solvers in solving a MoM matrix is mainly 
determined by the eigenvalue distribution of the 
MoM matrix, the eigenvalue distribution of MoM 
matrices of the above bases are investigated. An 
example of the eigenvalue distribution of MoM 
matrices (after diagonal preconditioning) of the 
sphere discretized with 216 unknowns using 
different bases at the frequency of 1 MHz is 
shown in Fig. 6. It can be observed from Fig. 6 (a) 
(see also Fig. 9 (a) for a block) that there are a lot 
of eigenvalues of the loop-tree bases close to zero, 
which explains why it has trivial effect on the 
conditioning of the corresponding MoM matrix by 
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taking the redundant loop basis as the solenoidal 
part of the loop-tree basis. By comparing Fig. 6 (a) 
with Fig. 6 (b) and (c), it can be found that the 
number of eigenvalues of the loop-tree bases 
nearby zero is much larger than that of the MR 
bases, which explains why the conditioning of the 
MoM matrices of the loop-tree bases is worse than 
that of MR bases. It can be observed from Fig. 6 
(b) that the eigenvalues of the MR basis with SVD 
solenoidal part is more closely clustered than that 
of the MR basis with LSV solenoidal part, which 
explains why the MoM matrix of the MR basis 
with SVD solenoidal part has a well condition 
number. It can be observed from Fig. 6 (c) (see 
also Fig. 9 (b) for a block) that the eigenvalues of 
the MR bases with loop or redundant loop 
solenoidal part are well distributed except there is 
a eigenvalue of the MR basis with loop solenoidal 
part very close to zero. Also, the smallest 
eigenvalue whose absolute value is about 1.3×10-2 
is removed to zero by taking the redundant loop 
basis as the solenoidal part of the MR basis. 
Namely, the smallest eigenvalue is replaced by the 
previous second smallest eigenvalue whose value 
is about 0.15 by keeping the redundant loop basis 
in MR basis. As a result, the ratio of the absolute 
values of the largest eigenvalue to the smallest 
non-zero eigenvalue is improved which explains 
why the redundant loop basis can improve the 
conditioning of the MoM matrix of the MR basis 
effectively. 

From the discussion given above, it can be 
concluded that the application of redundant loop 
basis in MR basis can improve conditioning of the 
MoM matrix of MR basis effectively, while it has 
trivial effect on the conditioning of the MoM 
matrix of loop-tree basis. 

  
C. Solvability of expanded MR basis with 
iterative solvers 

A similar phenomenon has been reported in [18], 
where a redundant volume loop basis is used to 
speed up the convergence of solutions in solving 
the volume integral equation and a proof is given 
to validate that the MoM matrix of the redundant 
volume loop basis can still be solved with an 
iterative solver without losing accuracy. The proof 
of the solvability of the MoM matrix of the 
expanded MR basis, which taking the redundant 
loop basis as its solenoidal part, can also be proved 
similarly. Alternatively, it can be proved easily by 

using a theorem in [19]. 
The expanded MR basis functions can be 

represented by the RWG basis functions via a 
basis-changing matrix [T] 

  0T
MRf T R      
 

,                       (4) 
where the number of RWG basis functions and 
MR basis functions is N and N+1 respectively, and 
the matrix [T] is a row full-rank matrix. Then the 
corresponding MoM matrix equation can be 
written as 

     ,MR MR MRZ I b                        (5) 

where      ,T
MRb T b       ,MRI T I   and 

       T
MRZ T Z T    in which  Z  is a full rank 

matrix formed from the RWG basis. It can be 
concluded that  MRb  belongs to the range space of 
 MRZ , since the rank of  matrix  MRZ  and  Z  is 
equal and [T] is a row full-rank matrix. It has been 
pointed out in [19] that a square linear system Ax = 
b has a Krylov solution if and only if b belongs to 
the range space of A. Therefore, the MoM matrix 
of the expanded MR basis can still be solved by 
Krylov iterative solvers. The bistatic RCS of a 
sphere (radius = 1 m) discretized with 3009 
unknowns at 1 MHz is taken as an example and 
shown in Fig. 7. It can be found from Fig. 7 that a 
good agreement is obtained between the exact Mie 
series and the expanded MR basis. 
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Fig. 7. Bistatic RCS of a sphere (radius = 1 m) 
discretized with 3009 unknowns at 1 MHz with 
the exact Mie series and the expanded MR basis 
with redundant loop solenoidal part. 
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IV. NUMERICAL RESULTS 

To validate the performance of the redundant 
loop basis applied in the MR basis, two examples 
will be analyzed in this section. The restarted 
GMRES(30) algorithm was chosen as the iterative 
solver. The examples were simulated in double 
precision with a relative residual of 10-5. All the 
results with different bases were obtained after 
applying a diagonal preconditioning to the MoM 
matrix. 

The first example is a metallic block 
(1m×1m×1m) with 1998 unknowns. The 
convergence behavior of GMRES(30) for the 
block using the loop-tree and MR bases over a 
frequency range of 0.1-50 MHz is shown in Fig. 8. 
It can be found from Fig. 8 that the redundant loop 
basis can further improve the performance of the 
MR basis while it has trivial effect on the loop-tree 
basis. Also, the LSV solenoidal basis performs 
more stable than the loop basis for the MR basis. 
However, the LSV solenoidal basis doesn’t 
perform as well as the redundant loop basis as 
shown in Fig. 8. The eigenvalue distribution of 
MoM matrices of the block using the above bases 
at 20 MHz is shown in Fig. 9. It can also be 
observed from Fig. 9 that the eigenvalue closest to 
zero is removed to zero by taking the redundant 
loop basis as the solenoidal part for both loop-tree 
basis and MR basis. However, there is only one 
eigenvalue very close to zero for MR basis which 
explains why the redundant loop basis can 

improve conditioning of the MoM matrix of the 
MR basis effectively. 

 

 
Fig. 9. The eigenvalue distribution of MoM 
matrices of a block using different bases at 20 
MHz. (a) Loop-tree bases with loop or redundant 
loop solenoidal part, (b) MR bases with loop or 
redundant loop solenoidal part. 
 

The second example is a more complex 
metallic plane model, whose length, width, and 
height is given by 9.3 m, 12.1 m, and 2.2 m, 
respectively. As shown in Fig. 10, the airplane 
model is nonuniformly discretized with 5034 
unknowns. The number of iterations of the 
GMRES(30) using the above bases over a 
frequency range of 0.1-16 MHz is shown in Fig. 
10. Obviously, the results of Fig. 10 also indicates 
that the redundant loop basis has significant 
advantage over the loop basis for MR basis. Also, 
the LSV solenoidal basis performs much better 
than the loop basis for the MR basis. 
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V. CONCLUSION 

A redundant loop basis generated by simply 
keeping all loop functions is applied in MR basis 
to improve the convergence of MR basis for 
closed structures. The properties of the MoM 
matrices using the loop-tree and MR bases which 
take the loop or redundant loop basis as their 
solenoidal part are analyzed. It is found that the 
eigenvalue of the MoM matrix of the MR basis 
closest to zero is removed to zero by using the 
redundant loop basis, i.e. keeping the redundant 
loop basis moves the smallest eigenvalue to zero. 
As a consequence, the expanded MR basis taking 
the redundant loop basis as its solenoidal part has 
significant advantage than the MR basis with the 
loop basis in convergence for iterative solvers for 
closed surfaces at the low frequency range. 
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