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Abstract ─ We considered the influence of 
multilayer structure parameters which are the 
index contrast, the period’s number and the 
reference wavelength on the transmission 
spectrum of a deformed structure. Deformation 
was introduced by applying the power law

1+= kxy .We revealed that the higher optical index 
contrast enhance the deformation effect on 
transmission properties of the structure at normal 
incidence. This work is a detailed study of the 
effect of the deformation introduced in the 
multilayer stack according to the mentioned law. 
 
Index Terms ─ Deformation, index contrast, 
multilayer structure, period’s number, reference 
wavelength, transmission properties.  
 

I. INTRODUCTION 
The photonic crystals (PCs) are beginning to 

have a profound effect on the development of 
nanoscale devices because they can significantly 
enhance the interactions between light and matter 
[1-3]. The properties of photonic crystals are not 
based on absorption or emission transitions. 
Instead they are determined by the index of 
refraction periodicity which can be scaled from 
submicron dimensions (to control UV/VUV light) 
to the centimetre scale (to control microwaves) 
[4,5]. The idea of photonic crystals is to introduce 
periodicity comparable to the optical wavelength 
in such a way that a photonic band gap (PBG) is 
formed. Different users need PCs with different 
PBG widths. So, flexibility and tunability of the 
PBG of PCs is crucial for flexible and dynamic 
nanophotonic circuits in future [6-8]. Chirped 
structure can be introduced in the photonic crystal 

to change the PBG. So, not only the quarter wave 
periodic structures but also the deformed ones 
have become significant structures of photonic 
crystals. In this work, the deformation was 
introduced by applying the power law, so that the 
coordinates y of the deformed object was 
determined through the coordinates x of the initial 
(periodic structure) object in accordance with the 
following rule: 1+= kxy . Here k  is the coefficient 
defining the asymmetry degree [9-12]. For 
example, the periodic structure is projected into 
itself without any changes of dimensions if 0=k . 
Deviation of the k  value from 0 leads to a 
deformed multilayer structure. This deformation 
occurs when its interest by the optimization of the 
deformation degree; but this optimization is not 
simple, it depends on the structure parameters such 
as the optical contrast ratio (the ratio of high 
refractive to low refractive index), the number of 
periods, and the reference wavelength. Within this, 
the present work considers the study of the 
deformed 1D-PCs behaviour when varying these 
parameters. So, we treat the interaction between 
the deformation degree k and the other parameters 
of the structure in aim to optimize the structure by 
widening the PBG at normal incidence. Through 
this study, we become able to control the PBG 
properties of the deformed system by controlling 
the structure parameters. The numerical method 
employed to obtain the transmission response of 
the structure is the transfer matrix method. 
 

II. METHOD OF MODELING 
For the calculation of system reflection and 

transmission, we employed the transfer matrix 
method (TMM). This technique is a finite 
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difference method particularly well suited to the 
study of PBG materials and it can solve the 
standard problem of the photonic band structures 
and the scattering (transmission, reflection, and 
absorption) spectrum [13].  

It is based on the Abeles method in terms of 
forward and backward propagating electric field, 
that is, +E and −E which were introduced to 
calculate the reflection and transmission. Abeles 
showed that the relation between the amplitudes 
[14] of the electric fields of the incident wave +

0E , 

reflected wave −
0E , and the transmitted wave after 

m layers, +
+1mE , is expressed as the following 

matrix for stratified films within m layers: 
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Here, jC is the propagation matrix with the 
matrix elements. 
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where jt  and jr  are the Fresnel transmission and 
reflection coefficients, respectively, between the 
( )thj 1−  and thj  layer. The Fresnel coefficients 

jt  and jr  can be expressed as follows by using 

the complex refractive index jjj iknn +=ˆ  and 

the complex refractive angle jθ . For parallel (P) 
polarization 
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Moreover, for perpendicular (S) polarization: 
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The complex refractive indices and the 
complex angles of incidence obviously follow 
Snell’s law: jjjj nn θθ sinˆsinˆ 11 =−−   (j = 1, 2… 

m+1). The values 1−jφ  in equation (2) indicate the 

change in the phase of the wave between ( )thj 1−   
and jth  boundaries and are expressed by the 
equation: 

0 0,ϕ =                                                          (7) 

1 1 1 1
2 ˆ cos .j j j jn dπϕ θ
λ− − − −=                          (8) 

Except for j = 1, λ  is the wavelength of the 
incident light in vacuum and 1−jd  is the thickness 

of the ( )thj 1−  layer. By putting 11 =−
+mE , 

because there is no reflection from the final phase, 
Abeles obtained a convenient formula for the total 
reflection and transmission coefficients, which 
correspond to the amplitude reflectance r and 
transmittance t, respectively, as follows: 

0

0

,E cr
E a

−

+= =                                                 (9) 

1 1 2 1

0

... .m mE t t tt
E a

+
+ +
+= =                                 (10) 

The quantities a and c are the matrix elements 
of the all product jC  matrix:  
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                        (11) 

By using equations (9) and (10), we can easily 
obtain the energy reflectance R as: 

2 .R r=                                                      (12) 
For (S) and (P) polarizations, and the energy 

transmittance T as: 
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for S and P polarization, respectively, where Re 
indicates the real part. 

 
III. MODEL AND FORMALISM 

The deformation was introduced by applying a 
power law, so that the coordinates y which 
represents the transformed object were determined 
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using the coordinates x of the initial object in 
accordance with the following rule: 

1+= kxy ,        (15) 
where k  is the deformation degree.  

The initial optical phase thickness, when we 
apply the y function, is: 

 θ
λ
πφ cos2

0x= .   (16) 

The optical phase thickness of the jth layer is: 
1 1

0
2 [ ( 1) ]cos( ).k k

j jx j jπϕ θ
λ

+ += − −      (17) 

Here, 
4

0
0

λ
=x is the optical thickness of each 

layer of the periodic structure, and 0λ  is the 
reference wavelength. 

For the deformed system, the optical 
thickness of each layer becomes variable and 
depends on the thj  layer and the deformation 
degree k. So, the optical thickness of each layer 
after deformation by the y function takes the 
following form: 

 ])1([ 11
00

++ −−= kk
j jjxx .  (18) 

 

 
Fig. 1. Principle of introducing a deformation into 
a periodic multilayer structure, for example for k= 
-0.2. 
 

It is clear that the optical thickness of each 
layer increases with k increasing. Figure 1 
describes the principle of the transformed system 
by the y function. 

For our study, refractive indices are assumed 
to be constant in the wavelength region of interest. 
We define the parameter contrast index x  which 
presents the ratio between the high index and the 
low index of the layers forming the system

B

H

n
nx = . The band gap width is defined as the 

wavelength range when T < 0.01%. 
 

III. STUDY OF DEFORMED 
STRUCTURE ACCORDING TO THE 

LAW 1+= kxy  
 
A. Interaction between the deformation degree 
and the contrast of indices 

The profiles of the optical properties of the 
system response as a function of k  as well as the 
optimal value of k  differ according to the contrast 
of indices. Figure 2 presents these profiles for 
some values of contrast. 

We perform this study for [ ]4.0;0∈k . For a 
given contrast, the forbidden photonic band exists 
for an interval of k  values and it is absent for 
other k  values. The contrast is more important 
when the interval is large, for a contrast of 

22
614.1 SiOTiO nn=  the band exists only for k  

lower than 0.2493, for a contrast of 2.41, the band 
is possible for values lower than 0.3264. 
Moreover, the curve ( )kf=δλ  for a particular 
contrast have a tendency to increase at the 
beginning, reach a maximum (the k  value 
corresponding to this maximum increases when 
increasing the contrast) and then decrease to a 
value under which, the PBG becomes absent. The 
PBG middle has the same profile as function of k  
for different contrasts, the PBG shifts towards the 
high wavelengths by increasing k . In order to 
improve the study of the contrast influence on the 
PBG of the deformed system, we investigate the 
influence of the index contrast on the deformation 
effect on the structure transmission spectra i.e. 
how the increasing of index contrast can improve 
the significance of deformation. For this, we 
choose a value of k  permitting to have a PBG for 
the contrast interval studied which is [ ]4;614.1 . 
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Fig. 2. PBG variation as a function of k for 
different values of optical index contrast.            
(a) Variation of the wavelengths of the negligible 
transmission band extremities as a function of k  
for different values of optical index contrast.      
(b) Variation of the bandwidth as a function of k 
for different values of optical index contrast.      
(c) Variation of the band center as a function of k 
for different values of optical index contrast. 
 

We select, for example, the value 2.0=k . 
Then, we display the plot showing the variation of 
the difference between the PBG width given by a 
deformed system and that given by the one not 
deformed according to the index contrast. The 
widening of the forbidden band according to the 
contrast is noted for the not deformed system as 
for the deformed one, but this widening is faster 
and more significant for the later.  

Indeed, Fig. 3 shows that the difference 
between the bands given by the two systems, 
deformed and not deformed, increases by 
increasing the index contrast. We generally 
conclude that the deformation of the system will 
have an interest for index contrast values relatively 
high. It is clear now that the best transmission 
spectrum is obtained for 4=x . Let us choose the 
best value of k  which enables us to have the 
broadest band belonging to the range [ ]2;3.0 . It is 
the value 2295.0=k . 

 

 
Fig. 3. Difference between the bandwidth of the 
deformed system and that of the not deformed one 
as function of the optical index contrast. 
 

Figure 4 shows the transmission spectrum of 
the system with 31 layers ( 15=j ), contrast=4, 
and 2295.0=k . Its properties are: 2676.1=δλ
µm and 3662.1=centerλ  µm. We note that the 
PBG covers the three telecommunication 
wavelengths 0.85 µm, 1.3 µm, and 1.54 µm. 

So, these results revealed that the choice of 
the optical index contrast is very influencing to the 
quality of the deformation when we consider the 
normal incidence. That gives us a liberty to choose 
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x  and k  according to the needs (spectral range, 
central wavelength, etc.). 

 

 
Fig. 4. Transmission at normal incidence of the 
deformed multilayer structure TiO2(SiO2/TiO2)15 
as a function of wavelength for a reference 
wavelength  λ0= 0.5 µm and P-polarized light. 
k=0.2295, x=4. Condition PBG: T<0.01 %. 
 
B. Interaction between the deformation degree 
and the number of periods 

We consider now the interaction between the 
degree of deformation and the number of periods 
forming the structure. The indices of the layers are 

34.2=Hn  and 45.1=Bn , the reference 
wavelength is 0.5 µm.  

Figure 5 shows that for a given number of 
periods, the PBG exists only for an interval of 
values of k . For example, for 10=j , the band 
exists only if [ ]0643.0;0∈k . For 15=j , k  must 
belong to [ ]2493.0;0 . For 18=j , k  must belong 
to [ ]34.0;0 . If we compare Fig. 5 with Fig. 2 
which gives the tendency of the optical properties 
of the transmission spectrum when varying k  for 
different values of contrast, we notice that the 
influence of increasing j  does not represent a 
great contribution to ameliorate the deformation 
effect on the structure response. In this case, the 
PBG middle shifts quickly towards the higher 
wavelengths when increasing k . Thus, to increase 
j  doesn’t represent a great interest for the studied 

deformed multi-layer structure.  
 

 

 
Fig. 5. PBG variation as a function of k for 
different values of period’s number. (a) Variation 
of the wavelengths of the negligible transmission 
band extremities as a function of k for different 
values of period’s number. (b) Variation of the 
bandwidth as a function of k for different values of 
period’s number. (c) Variation of the band center 
as a function of k for different values of period’s 
number. 
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Figure 6 gives for each j  the corresponding 
omnidirectional bandwidth for 4=x  and

2295.0=k . With these conditions, the minimum 
number of periods is 7 which permits to have a 
PBG (width =0.0264 µm).  

Figure 7 shows the variation of the difference 
between the PBG width given by a deformed 
system and that given by the not deformed system 
according to j  with j  varies between 7 and 15 
periods. For 7=j , the deformation has a negative 
effect on the system response because it reduces 
the complete bandwidth compared to the not 
deformed system. But starting from 8=j , the 
deformation improves the response of the system. 

 
C. Interaction between the deformation degree 
and the reference wavelength λ0 

By studying the interaction between the 
reference wavelength variation and that of the 
deformation degree (Fig. 8), we can say that the 
reference wavelength variation doesn’t have any 
effect on k  optimization. Moreover, the curves 
corresponding to the various values of 0λ  have 
almost the same tendency, the widening of the 
band and its displacement according to 0λ  are 
already noted for the not deformed system. So, the 
variation of 0λ  does not influence the effect of the 
deformation. 

 

 
Fig. 6. Variation of the bandwidth as function of 
the period’s number. x=4, k=0.2295.  

 
Fig. 7. Difference between the bandwidth of the 
deformed system and that of the not deformed one 
as function of the period’s number. x =4, 
k=0.2295. 
 

Moreover, the increase of 0λ  doesn’t make it 
possible to increase the degree of deformation, we 
are always limited by the value 0.2493 of k . Some 
is the value of 0λ , the PBG does not exist for 
values of 0.2493k > . The optimal value of k  for 
all the curves is the same one, it is 0.07737.  

Figure 9 shows the difference between the 
PBG width given by a deformed system with 

07737.0=k and that given by the not deformed 
system according to 0λ , it is clear that the 
difference does not progress much with the 
wavelength reference. We thus note that the 
variation of the reference wavelength doesn’t 
represent a good way to improve the effect of the 
deformation on the system response. 

 
VI. CONCLUSION 

We can consider the present work very 
interesting since it presents an optimization multi- 
parameter of the chirped multi-layer structure. We 
investigated the behaviour of the optical properties 
of the system versus the variation of its 
parameters. The interest of the deformation is not 
always concluded, it depends on the selected 
parameters of the system. This study can represent 
a support which gives for which parameters of the 
system we can consider the deformation 
interesting and which are the corresponding values 
of k  optimum. In general, we can say that if we 
want to improve the performances of the optical  
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Fig. 8. PBG variation as a function of k for 
different values of reference wavelength. (a) 
Variation of the bandwidth as a function of k for 
different values of reference wavelength. (b) 
Variation of the band center as a function of k for 
different values of reference wavelength. (c) 
Variation of the wavelengths of the negligible 
transmission band extremities as a function of k 
for different values of reference wavelength. 

 

 
Fig. 9. Difference between the bandwidth of the 
deformed system and that of the not deformed one 
as function of the reference wavelength. 
k=0.07737. 
 
components at normal incidence, it is preferable to 
choose the maximum index contrast and the 
highest degree of deformation which gives the best 
response which meets our needs. 
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