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Abstract �An unconditionally stable locally 

one-dimensional multi-resolution time-domain 

(LOD-MRTD) algorithm is studied, which is 

free of the Courant-Friedrich-Levy (CFL)

stability condition. The LOD-MRTD method is 

reformulated to get more efficient and simple 

formulations. The unconditional stability and 

dispersion equations of the LOD-MRTD in two 

dimension (2D) case are analyzed, and a 2D

example is calculated to demonstrate these 

characteristics.

Index Terms - Locally one-dimensional (LOD),

multi-resolution time-domain (MRTD), and 

unconditional stability.

I. INTRODUCTION
The finite-difference time-domain (FDTD) 

method has been displayed in an effective way 

to provide accurate predictions to the field 

behaviors for varieties of electromagnetic 

interaction problems [1-2].  The FDTD method 

is very computationally intensive due to its two 

inherent physical constraints, one being the 

numerical dispersion, and another being the 

numerical stability. Because of the Courant –

Friedrich – Levy (CFL) stability condition and 

the numerical dispersion errors, heavy meshing 

work and simulation cost time may be required 

to solve the electrically large structures. To 

reduce the value of the numerical dispersion, the 

spatial step of the FDTD method must be chosen 

fine, and normally it is less than one twentieth of 

wavelength. To make time-recursion stable, the 

time step must satisfy the CFL stability 

condition. Many efforts have been made in 

relaxing or removing the above two constraints 

to reduce the computational expenditures. To

improve the numerical dispersion problems, 

some methods such as the MRTD method [3-5],

the pseudo-spectral time domain (PSTD) method

[6-7], and the higher order FDTD scheme [8],

have been devoted to the way. 

Among them, the space distribution 

functions of the MRTD scheme are expanded by 

the scaling and wavelet functions as basis 

functions [9-11]. The multi-resolution analysis 

(MRA) is applied to significantly reduce the 

dispersion errors. In order to further improve the 

computational efficiency of the MRTD methods 

and save the computational time, there are two 

approaches at least to be considered. One is the 

high-order method, in which the convergence of 

the time discretization is the same with the 

convergence of the spatial discretization, is 

called the RK-MRTD scheme [12]. Another 

approach is to use the ADI technology, which is 

applied into the MRTD scheme to form the 

ADI-MRTD method [13-14]. The ADI-MRTD 

method is free of the CFL stability condition and 

reduces significantly the computational time.

The locally one-dimensional (LOD) method 

is first introduced to the FDTD method by J. 

Shibayama [15]. The LOD-MRTD approach is 

proposed in [16], which shows the LOD-MRTD 

method more efficient compared with the 

ADI-MRTD method. In this paper, an improved 

LOD-MRTD method is studied. The scheme 

developed in [17] is applied in the conventional 

LOD-MRTD. The reformulated LOD-MRTD 

can get better efficiency than the conventional 

LOD-MRTD.

The remainder of the paper is organized as 

follows. In section II, the conventional and 
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reformulated LOD-MRTD method is introduced.  

In section III, the numerical properties of the 

method in 2D case are analyzed, which includes 

the stability condition and the numerical 

dispersive characteristics. In section IV, a

validation of an example and discussion of 

numerical results is presented. Finally, 

conclusions are summarized in section V.

II. LOD-MRTD FORMULATION
For simplicity, let us consider a 

two-dimensional (2D) TMz
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wave propagation in 

a lossless isotropic medium with permittivity �
and permeability �.. Maxwell’s equations are 

expressed as follows,
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According to [15], applying the LOD method to

the time discretization of equation (1),

Maxwell’s equations can be solved using two 

steps, the first step is
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In the MRTD scheme, the Daubechies 

compactly supported scaling functions are 

adopted as basis functions in the expansion of 

the fields. Using the orthogonal relations for the 

scaling functions [4], the derivative of the update 

equations (2) are represented as follows, for step 

n to step n+1/2,
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For step n+1/2 to step n+1
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where the coefficients a(v) are resulted from the 

scaling functions and satisfy the relation of a(v)

= -a(-v-1), Nv
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= 2N-1 and N is the order of 

vanishing moments of the Daubechies scaling

functions used in the LOD-MRTD.

The 2D LOD-MRTD formulations can be 

further simplified, after some tedious derivations, 

we finally obtain the 2D LOD-MRTD iterative 

equations, and there are only four equations to 

be calculated.

,

(4a)
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It needs to solve a banded matrix from the 

updated equations, and the width of the banded 

coefficient matrix is determined by the order of 

vanishing moments of the Daubechies scaling 

functions. In the 3D LOD-MRTD all the six 

components of the E and H should be solved.  

The iterative equations of the LOD-MRTD 

method [16] in the three-dimensional formula 

are expressed as follows, such as Ex and Hz
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components for step n to step n+1/2,

(5a)
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It is clear that all the electric field equations 

are implicit iteration equations related with 

coefficients a(v), but the magnetic field 

equations are the explicit iterative.  

For the 2D problem, because the number of 

the update electric and updated magnetic fields 

are different, the required memory used in the 

LOD-MRTD algorithm is more than one third 

that of the original MRTD method; but in the 

three-dimensional case, the electric and the 

magnetic fields requires all six components, the 

total cost memory is 1.5 times to the classical 

MRTD method.

According to [17], the LOD-FDTD method 

can be reformulated, which makes the right-hand 

sides much simpler and more concise. We use 

this method to reformulate the LOD-MRTD 

algorithm to improve its efficiency. First an

auxiliary variable P is defined as,
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Then substitute equation (6) to equations (4) and 

(5), the formulations of the conventional 

LOD-MRTD method can be rewritten as,
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for the 3D case, respectively. 

It can be found that the right-hand sides of

equations (7) and (8) become much simpler.

Table 1 is listed in the number of arithmetic 

operations for the two methods. Furthermore, it

is easy to know that the reformulated equations 

do not change the accuracy of the LOD-MRTD 

method.

Table 1: Number of multiplication / division 

operations for the conventional LOD-MRTD and 

the reformulated LOD-MRTD algorithms.

3D MRTD method
Conventional

LOD-MRTD

Reformulated 

LOD-MRTD

Implicit

multiplication/ 

division

(2*(2Nv) 2+7)

+(2Nv

2N
+3)

v+4

For D2 scaling 

function (N=2, 

Nv=3)

88 10

Explicit

multiplication/ 

division
2Nv 2N+4 v+4

For D2 scaling 

function (N=2, 

Nv=3)

10 10

Total

multiplication/ 

division

(2*(2Nv) 2+8)

+2*(2Nv

4N
+3)

v+8

For D2 scaling 

function (N=2, 

Nv=3)

98 20

III. CHARACTERISTICS ANALYSIS
The unconditional stability and dispersion 

equations of the LOD-MRTD in 3D case have 

been discussed in [16]. Here, we talk about these

characteristics in 2D case. For the unconditional 

stability of the LOD-MRTD method, we employ 

the Fourier method described in [18-19] to 

obtain. The field components in the spatial 

spectral domain for the TMz wave can be 

written as,
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are wave numbers along the x-

and y-directions, respectively, and denote the 

field vector in the spatial spectral domain as,
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The Fourier analysis can be performed by 

substituting equations (9) and (10) into equation 

(3), then the following equation is obtained,
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Here, � is called the amplification matrix. In 

order to value the eigen values of the matrix �,

the following eigen equation of � can be used.
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The eigen values of � can be found, with the 

help of Matlab, as
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It can be found that all the three eigen values 

have magnitude of unity, so the LOD-MRTD is 

unconditionally stable. Further, we can derive 

the dispersion equation of the LOD-MRTD 

method [20],
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2
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Equation (16) is the same as that of the 

ADI-MRTD method, which means that the 

LOD-MRTD and the ADI-MRTD methods have 

the same order dispersion errors.

IV. NUMERICAL RESULTS
To examine the performance of the 

LOD-MRTD, we consider a 2D parallel plate 

resonator. The total size is 1m × 1m �����x ���y
���s = 0.05m for the TMz polarization model. 

The CFL number � for the MRTD scheme is 

	
�����������������
����������� = �0 ����� =

�0. It is noted that when one calculates the 

resonant frequency, we need to set the adequate 

time step, so that the frequency resolution of 

FFT meets the requirements to ensure the 

validity of the results data of the resonant 

frequency.

Figure 1 shows the relation of the 

computational errors increasing with the 

decrease of Nc and the CFLN. Figure 2 is the 

comparison of error of the proposed method with 

those of the ADI-MRTD method when CFLN 

takes different values. The calculation accuracy 

of the LOD-MRTD method is consistent with the 

ADI-MRTD method, and also agrees with the 

theoretical analysis described in the above 

section. From Fig. 2, we find that the simulation 

results of the LOD-MRTD method are 

reasonable and acceptable when the stability 

coefficient is taken some times as the classical 

MRTD method. Table 2 lists the parameters used 

in the LOD-MRTD and the MRTD methods, 

here CFLN = �LOD-MRTD / �MRTD, Nc

In this paper, an improved LOD-MRTD 

method is studied. The improved LOD-MRTD is 

more efficient than the conventional LOD

-MRTD without loss of accuracy. A 2D case is 

calculated to demonstrate the characteristics of 

the LOD-MRTD.

= �/�s.

V. CONCLUSIONS

,

238 ACES JOURNAL, VOL. 28, NO. 3, MARCH 2013



Table 2: Analytic solutions and the results of the MRTD and the LOD-MRTD methods.

Mode (m, n) 1,1 1,3 3,3 1,5 3,5 5,5 3,7 5,7 1,9

cN 28.28 12.65 9.43 7.84 6.86 5.66 5.25 4.65 4.42

Analytic (GHz) 0.2121 0.4743 0.6364 0.7649 0.8746 1.0607 1.1422 1.2904 1.3583

MRTD/ 0.3MRTD� � 0.2124 0.4749 0.6378 0.7678 0.8789 1.0675 1.1542 1.3049 1.3837

LOD-MRTD/ CFLN=1 0.2118 0.4736 0.6354 0.7629 0.8722 1.0565 1.1377 1.2842 1.3519

LOD-MRTD/ CFLN=2 0.2118 0.4712 0.6311 0.7526 0.8606 1.0388 1.1102 1.2506 1.2970

LOD-MRTD/ CFLN=4 0.2115 0.4630 0.6165 0.7166 0.8200 0.9427 0.9760 1.0193 1.1362

LOD-MRTD/ CFLN=5 0.2109 0.4565 0.6060 0.6934 0.7935 0.8921 0.9360 0.9658 1.0523

LOD-MRTD/ 

CFLN=10
0.2075 0.4150 - - - - - - -

LOD-MRTD/ 

CFLN=15
0.2018 0.3682 - - - - - - -

LOD-MRTD/ 

CFLN=20
0.1948 0.3252 - - - - - - -

Fig. 1. The error varied of the LOD-MRTD 

method for different Nc and CFLN.

Fig. 2. The error comparisons of the 

LOD-MRTD and the ADI-MRTD methods.
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