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Abstract ─ The algorithm based on the 
Electromagnetism-Like mechanism results from 
the Coulomb’s law of electromagnetics. In this 
paper, a novel stochastic approach based on the 
Electromagnetism-Like mechanism is applied to 
the optimization of electromagnetic devices. In 
order to show the effectiveness of the proposed 
method, it has been demonstrated on a magnetizer 
by optimizing its pole face to obtain the desired 
sinusoidal magnetic flux density distribution. 
 
Index Terms ─ Electromagnetic devices, 
Electromagnetism-Like mechanism, finite element 
method, and optimization. 
 

I. INTRODUCTION 
In all areas of engineering the efficient and 

effective design of products is crucial. Therefore, 
designers are faced with the challenge of 
optimizing ever more complex components, 
devices and systems this is more specifically so in 
the field of electromagnetic devices (EMD) where 
the optimization is of paramount importance [1-3]. 
In the area of EMD, building physical prototypes 
is a time consuming and prohibitively high cost 
approach and can represent a large percentage of 
the total costs involved in bringing a product to 
market [1, 4]. Reducing this time and cost burden 
has been, and still is, a key issue. Therefore, 
designing engineers have spent considerable time 
and effort on the creation of algebraic models to 
simulate the physical EMD and eventually to 
predict its performance [1]. Nowadays, real 
laboratories are replaced by computer 
environments for this purpose. In these virtual 
laboratories the physical EMD is replaced by a 
virtual prototype, which can be tested with the 

same level of accuracy as the physical EMD but 
with significant reductions in time and cost [4]. 
Moreover, with the development of more accurate 
and complex models in addition to the 
development of cheap and powerful computing 
systems, we are able now to simulate the physics 
involved in the operation of an EMD at a high 
level, which is as good as, or sometimes better 
than, what can be achieved from a physical 
prototype in a real laboratory [1].  

Prototype evaluation is a critical component of 
the design process. In general, such a system 
explores the design space in order to find a set of 
parameters, which most nearly meet the 
specifications without violating a set of imposed 
constraints [5]. Such a search has two basic steps. 
In order to improve the performance of an existing 
prototype device, this last one is modified which 
represents the first step. The second step consists 
of measuring that performance to determine if any 
improvements have been done. This is generally 
described as an optimization process [1]. Thus, the 
purpose of optimization within a design activity is 
to find an improved solution for given 
requirements [1]. 

In general, searching techniques can be 
divided into two distinctive groups: deterministic 
and stochastic techniques [6]. The deterministic 
searching techniques are usually based on the 
calculation of the gradient of the objective 
function. On the other hand, for stochastic 
methods, computation of gradients is not 
necessary [6]. 

In the field of EMD design, optimization 
problems are very complex and involve many 
difficulties [7, 8]. Therefore, in many cases, 
deterministic methods are inappropriate for EMD 
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optimization and stochastic techniques become a 
necessity [2]. Therefore, recently stochastic 
methods have been widely applied for 
multivariable inverse shape optimization, mainly 
due to their ability to avoid being trapped in a 
local optimum of the objective function [6]. 
Consequently, many researchers have devoted 
themselves in finding some reliable stochastic 
optimization methods, such as Electromagnetism-
Like mechanism (EM) method. 

The EM algorithm, which is proposed by 
Birbil and Fang [9] is one of the newest meta-
heuristic. It is based on the attraction-repulsion 
mechanism of electromagnetism theory to move 
the sample points towards the optimality [10]. This 
method is applicable on nonlinear problems with 
bounded variables. This method considers each 
point as a charged particle. Each particle is 
impressed by other particles and consequently 
transmitted to better solution space [10]. The ease 
implementation and flexibility of the EM gains 
more attention from a lot of researchers, and it has 
been extended and applied in different researches, 
most of which have reported its promising 
performance [10]. 

In this work our main objective is to apply the 
EM for the optimization of EMD. First, we present 
the EM method, its advantages and how it works. 
Next, we illustrate the performance of our 
proposed method on the optimization of the pole 
face shape of a magnetizer problem. Finally, we 
conclude our paper with some final remarks and 
points. 
 

II. ELECTROMAGNETISM-LIKE 
MECHANISM 

As mentioned earlier, the EM is a flexible, 
effective, and a population based heuristic method, 
which is used to search for the optimal solution of 
global optimization problems proposed by Bïrbïl 
and Fang in 2003 [9]. It originates from the 
attraction–repulsion mechanism of the 
electromagnetism theory of physics by considering 
potential solutions as electrically charged particles 
spread around the solution space.  

This heuristic EM consists of four stages. 
These are initialization of the algorithm, 
calculation of the total force exerted on each 
particle, movement along the direction of the 
force, and application of neighbourhood search to 
exploit the local minima [9]. Each of these four 

stages is discussed in more detail below. The 
general EM algorithm proposed in Birbil and 
Fang’s paper is described in Algorithm 1. 

 
Algorithm 1: EM (m, MAXITER, LSIT ER, δ) 
m: number of sample points, 
MAXITER: maximum number of iterations, 
LSITER: maximum number of local search 
iterations, 
: local search parameter, δ [1 ,0] א. 
 

1: Initialize() 
2: iteration ←1 
3: while iteration <MAXITERdo 
4: Local(LSITER, δ) 
5:  F ←CalcF() 
6:  Move(F) 
7:  iteration ←iteration + 1 
8: end while 

 
As mentioned earlier, the first stage is the 

initialization of the algorithm. In this procedure, m 
particles are randomly generated inside the 
feasible domain, which is an n dimensional hyper-
solid. Each coordinate of a point is assumed to be 
uniformly distributed among the corresponding 
upper and lower bounds. After a point is sampled 
from the space, the objective function value for the 
point is calculated using the function pointer f(x). 
At the end of the initialization procedure, m points 
are identified and the point that has the best 
function value is stored in xbest [9, 11]. 

After determination of the initial solutions, the 
second step is to conduct a local search for the 
local optimum. Local search can be divided into 
three kinds, i.e., no local search, local search only 
on current better particle and local search on all 
particles [12]. Any local method of optimization 
such as hill-climbing [13, 14] or gradient-based 
methods [15] could be introduced in this phase. 
Random selection near the original solution is 
proposed in the primary algorithm [11].  

The third step is to calculate the total force 
exerted on each particle. Here the superposition 
principle of the electromagnetism theory is used. 
The proportion of the charges of the points and the 
inverse proportion of the distance between the 
points are utilized to calculate the force exerted on 
the particle through other points [11]. In each 
iteration we compute the charges of the particles 
according to their objective function values. The 
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virtual charge qi of the i-th particle determines 
point i’s power of attraction or repulsion. It is 
determined by the cost function value, and is 
calculated by, 

 

௜ݍ ൌ exp ቆെ݊
݂൫ݔ௜൯ െ ݂൫ݔ௕௘௦௧൯

∑ ൫݂ሺݔ௞ሻ െ ݂ሺݔ௕௘௦௧ሻ൯௠
௞ୀଵ

ቇ ݅׊ (1) 

 

where f(.) denotes the cost function and m denotes 
the population size. The ݂൫ݔ௕௘௦௧൯ denotes the best 
cost function value. The particle with largest 
charge (i.e., best cost function value) is called the 
“optimum particle”. A particle will have stronger 
attraction, as it appears near the optimum particle. 
The particle attracts other particles with better cost 
function values, and repels other particles with 
worse cost function values [12]. 

In order to improve efficiency and solution 
accuracy by exploring the attraction-repulsion 
mechanism of the EM algorithm, [16] studied the 
effect of charges associated with each point in the 
population. The total force exerted on the i-th 
particle is determined from the Coulomb’s law and 
superposition principle, and is given as, 
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where f(xj) < f(xi) represents attraction and f(xj) ≥ 
f(xi) represents repulsion. From equation (2), we 
conclude that the resultant force between particles 
is proportional to the product of the charges and is 
in inverse proportion to the distance between the 
particles. Of course, a particle will not produce the 
force to affect itself. In general, the force in 
equation (2) is normalized as, 

௜ܨ ൌ
௜ܨ

ԡܨ௜ԡ
(3) . ݅׊ 

The final stage involves moving along the 
orientation of the force. After calculating the total 
force of one point, this point moves by a random 
step length in the path of the force to cause the 
particles to move into any unvisited zones along 
this path. The update of each particle depends on 
the resultant force, and is given by, 
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where bupper is the upper bound, blower is the lower 
bound, and α is a random value uniformly 
distributed between zero and one. The particle 
moves toward the upper bound by a random step 
length α as the resultant force is positive, whereas 
it moves toward the lower bound as the resultant 
force is negative. In the mechanism, the optimum 
particle of the population does not move, because 
it has the best cost function value and then attracts 
all other particles [12]. 

The second through the fourth stages are 
repeated until a termination criterion is reached. 
The termination criterion could be the maximum 
number of iterations given by the user or the 
amount of iterations performed without replacing 
the current optimal solution. In other words, if the 
current best point is not changed for certain 
number of iterations, the algorithm may be 
stopped. However, this decision has to be studied 
carefully since algorithm may be stopped before 
converging to the global optimum. On the other 
hand, un-necessary function evaluations may be 
avoided by stopping earlier [9]. In the initial 
algorithm, the maximum number of iterations was 
used [11]. EM has been successfully applied to 
various cases [11]. As the EM algorithm has not 
yet been utilized for EMD optimization, this study 
attempts to apply EM for this purpose. 

 
III. APPLICATION EXAMPLE 
In shape optimization tasks, each set of 

particles or charges of the total number of sample 
points represents the geometry of a specific 
design. This design is translated into a model to be 
solved using the Finite Element Method (FEM). 
Then a fitness value is obtained after solving this 
model. Thus, it is a paramount task to identify the 
optimal set of parameters by comparing the 
obtained fitness. These parameters are used to 
form the outlines of different regions of the 
modeled EMD, in our case the magnetizer. 

The initial version of the magnetizer problem 
was the pole face shape of a motor. Then, it has 
been developed and has become an independent 
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benchmark for the optimization of EMD called the 
magnetizer problem. The most important 
constraint of the design is to have a smooth pole 
face shape with no zigzags. This is achieved by 
not allowing individual nodes on the pole face to 
move independently but by determining their 
position from the 3rd order polynomial used to 
define the pole face geometry as it is detailed in 
the following section. The advantage of this 
problem is its ability to consider more design 
variables by adding more nodes to the pole face 
shape.  

 
A. Magnetizer problem description 

The application of EM for electromagnetic 
device optimization is illustrated on a magnetizer 
problem modeled as a 2D magneto static field 
analysis using FEM. The geometry of the modeled 
part of the magnetizer example is shown in Fig. 1. 
It has four main parts, which are the pole face, the 
coil or windings, the outer shell, and the material 
to be magnetized. In the FEM model, a low 
permeability (close to that of the air) is assigned to 
the object to be magnetized (non-magnetic 
material). However, the pole face and the outer 
shell are treated as magnetic materials and a 
permeability of 1000 is assigned to them. A high 
current is applied to the coil region. The non-
linearity is not taken into account when solving the 
governing equations of the model. The goal is to 
optimize the magnetizer’s pole shape in order to 
obtain a sinusoidal increasing magnetic flux 
density along chord AB positioned halfway 
through the width of the magnetized piece. 

The pole shape is modeled using Uniform 
Non-rational Cubic B-splines (UNBS) with n 
control points. UNBS interpolation provides local 
control of the curve i.e., when a control point is 
moved, this affects only a small part of the curve. 
A B-spline is constructed from a string of curve 
segments whose geometry is determined by the 
control points. These curves are known as 
piecewise polynomials. A curve segment does not 
have to pass through a control point, unless this 
control point is repeated at least three times, which 
is desirable at the two end-points [17, 18]. 

Once the locations of the n control points are 
set, the shape of the pole face is constructed from 
a series of curve segments S1, S2, S3,…,Sn−3. As the 
curve is cubic, curve segment Si is influenced by 
the control points Pi, Pi+1, Pi+2, Pi+3, and curve 

segment Si+1 is influenced by Pi+1, Pi+2, Pi+3, Pi+4. 
There are n control points, so there are n-3 curve 
segments. A single segment Si(t) of a B-spline 
curve is defined by [19], 
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൅
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൅
െ3ݐଷ ൅ ଶݐ3 ൅ ݐ3 ൅ 1

6 ௜ܲାଶሺݐሻ

൅
ଷݐ

6 ௜ܲାଷሺݐሻ . 

(5)

In equation (5), the coefficients are called the B-
spline blending functions and 0 ≤ t ≤ 1.  

 

 
 

Fig. 1. Geometry of the magnetizer to be 
optimized. 
 

In this work, we have chosen to apply the EM 
on two cases called CASE 1 and CASE 2. In 
CASE 1 the pole shape is modeled using eight 
control points, P1, P2, P3, and P4, where P1 and P2 
are repeated three times each to force the curve to 
pass at these two ending points. For the eight 
control points of the pole face shape, five curve 
segments are generated. The nodes on the pole 
face are then placed on this B-spline 
approximation. 

In CASE 2 we have added two more control 
points. Similarly to CASE 1, once the locations of 
the control points are set, the curve that shapes the 
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pole face is constructed with B-splines. In this 
case the pole face curve touches the control points 
P1 and P6, each of which is represented with three 
coinciding B-spline control points. 

1. Design variables 
There are n (n = 4 for CASE 1 and n = 6 for 

CASE 2) points that control the pole face's shape, 
which are noticed as P1 through Pn. The control 
points are mapped onto a polar coordinate system 
with its origin at Q as shown in Fig. 1. The radial 
coordinates, r1 through rn (separated from each 
other by 30 and 18° for CASE 1 and CASE 2, 
respectively), constitute the n design variables 
with mapping ranges given in Table 1 for CASE 1 
and in Table 2 for CASE 2. These ranges are 
calculated for each design parameter based on the 
geometry of the device and the number of control 
points. Once determined, the radial and angular 
coordinates of a control point are mapped back to 
the x and y coordinates and UNBS are used to 
approximate the shape of the pole face from the n 
control points. 

 
Table 1: Design variables and their ranges used in 
the magnetizer problem for CASE 1. 

Design 
variable 

Lower bound 
[mm] 

Upper 
bound[mm] 

r1 22.0 29.5 
r2 22.0 31.3 
r3 22.0 38.7 
r4 22.0 48.5 

 
Table 2: Design variables and their ranges used in 
the magnetizer problem for CASE 2. 

Design 
variable 

Lower bound 
[mm] 

Upper 
bound[mm] 

r1 22.0 29.5  
r2 22.0 30.2 
r3 22.0 32.3 
r4 22.0 36.0 
r5 22.0 41.4 
r6 22.0 48.5 

 

2. Objective function 
The difference which has to be minimized 

between the desired and calculated magnetic flux 
densities along the chord AB (as shown in Fig. 1) 
is, 

F ൌ ෍
|Bୢୣୱ୧୰ୣୢ െ Bୡୟ୪ୡ୳୪ୟ୲ୣୢ|

Bୢୣୱ୧୰ୣୢ

ே

ଵ

 (6)

where N is the number of test points. Bdesired and 
Bcalculated represent the desired and calculated 
magnetic flux densities, respectively. The desired 
flux density distribution Bdesired, is calculated using 
the following formula, 
 

Bୢୣୱ୧୰ୣୢ ൌ B଴ sinሺߠሻ  35° ൑ ߠ ൑ 89° (7) 
 

where B0 is the maximum value (magnitude) of 
the desired magnetic flux density distribution to be 
specified by the designer. In this paper B0 is 
chosen to be 0.27 T. 

3. EM optimization parameters 
The proposed EM based method has been 

implemented using Matlab Software. Initially, 
several runs have been done with different values 
of the EM key parameters (such us the number of 
sample points and the local search parameters) in 
order to identify the best combination. In our 
implementation the EM runs for each case with the 
key parameters given in Table 3. 

 
B. Results 

The results obtained when the EM described 
above runs for CASE 1 and CASE 2 are given in 
Table 4 and 5 and Fig. 2 through Fig. 7. In Table 4 
and Table 5 the values of the optimized control 
points are given for CASE 1 and CASE 2, 
respectively. Figures 2 and 5 show the optimized 
magnetizer pole face and the isopotential lines for 
CASE 1 and CASE 2, respectively. In Fig. 3 the 
desired magnetic flux density distribution along 
chord AB is compared against the distribution of 
the optimal solution calculated using EM for 
CASE 1. Figure 6 gives the same comparison for 
CASE 2. We can notice that there is a clear 
improvement, which is due to the higher number 
of control points. Finally, Figs. 4 and 6 sketch the 
changes in the best fitness of each iteration over 
the 50 iterations for CASE 1 and CASE 2, 
respectively. We can notice here that the fitness 
for CASE 1converges quickly and to a best value 
than CASE 2. This is due to the same reason 
mentioned earlier. 
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Table 3: EM optimization parameters for CASE 1 
and CASE 2. 

Name Description Value 

n 
Dimension of the 

problem (number of 
design variables) 

CASE 1: 4 
CASE 2: 6

m 
Number of sample 

points 
10 

MAXITER 
Maximum number of 

iterations 
50 

LSITER 
Maximum number of 
local search iterations 

5 

 
Local search 

parameter, [0,1] 
110-4 

 
Table 4: Coordinates of the optimized control 
points for the magnetizer of CASE 1. 

Design variable Optimal solution [mm] 
r1 25.458 
r2 27.576 
r3 33.349 
r4 37.626 

 
Table 5: Coordinates of the optimized control 
points for the magnetizer of CASE 2. 

Design variable Optimal solution [mm] 
r1 25.239 
r2 26.338 
r3 27.583 
r4 30.544 
r5 34.318 
r6 37.405 

 

 
 
Fig. 2. Optimized magnetizer pole face and iso-
potential lines for CASE 1. 

 
 

Fig. 3. Comparison between the desired and 
optimal magnetic flux density for CASE 1. 
 
 

 
 

Fig. 4. Change of the best fitness over iterations 
for CASE 1. 

 

 
 

Fig. 5. Optimized magnetizer pole face and 
isopotential lines for CASE 2. 
 

30 40 50 60 70 80 90

0.16

0.18

0.2

0.22

0.24

0.26

0.28

 [deg]

M
ag

n
et

ic
 F

lu
x

 D
e

n
s

it
y 

 [T
]

 

 

B0 desired

B optimized

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

Iteration

F
it

n
e

s
s

246 ACES JOURNAL, VOL. 28, NO. 3, MARCH 2013



 
 

Fig. 6. Comparison between the desired and 
optimal magnetic flux density for CASE 2. 
 

 
 

Fig. 7. Change of the best fitness over iterations 
for CASE 2. 

 
IV. CONCLUSION 

This paper describes an electromagnetism 
based algorithm, which is a powerful yet easy 
algorithm for EMD design and optimization. The 
results obtained in this paper show that the EM 
constitutes a potential and efficient tool for the 
design and optimization of EMD. The proposed 
method is successfully applied on a magnetizer 
shape optimization problem. Two cases with 
different number of control points are studied. In 
both cases the EM converges rapidly to optimum 
(in less than 50 iterations). However, the 
comparison of the results between these two cases 
indicates that the efficiency is increased in CASE 
2. These improvements are primarily attributed to 
the higher number of control points used. 

 

EM algorithm is a free derivative method it 
uses only the fitness value. These characteristics 
render it robust as it can adapt to the environment. 
EM can be used as a stand-alone approach or as an 
accompanying algorithm for other methods. The 
strength of the algorithm lies in the idea of 
directing the sample points toward local 
optimizers by utilizing an attraction-repulsion 
mechanism. Finally, EM is fully parallelizable. 
The evaluation of each set of points is independent 
from other sets. This trait makes the use of 
Connection Machine type computers or work 
stations farms where CPUs are shared very 
profitable for EM applications. 
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