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Abstract ─ The coil locations have strong impacts on 

efficiency, resonant frequency and bandwidth in the 

wireless power transfer (WPT) system with four coil 

resonators, which is a popular configuration for mid-

range WPT via magnetic resonance coupling. Herein, 

effects of coil location parameters, such as the distances 

between neighboring coils, are investigated by virtue of 

full-wave electromagnetic solution and validated by 

measurements. Three operational regions can be defined 

in terms of the distances between neighboring coils: over 

coupling, strong coupling and under coupling. It is 

shown that the distance between the receiving coil and 

the load coil has significant impact on the power transfer 

efficiency whereas the distance between the driving coil 

and the transmitting coil may merely affect the 

bandwidth and the resonant frequency in the strong 

coupling regime. In addition, the distance between the 

transmitting coil and the receiving coil can have strong 

impact on both the bandwidth and the resonant 

frequency. Design guidelines for optimal coil locations, 

by which the highest transfer efficiency or the longest 

transfer distance can be achieved, are also discussed. 

 

Index Terms ─ Magnetic resonance coupling, power 

transfer distance, wireless power transfer. 
 

I. INTRODUCTION 
In recent years, wireless power transfer (WPT) has 

been drawing a great deal of attention. The WPT 

technology allows elimination of unsightly, unwieldy 

and costly power cords and eases anxiety of running out 

of battery power. The WPT systems have found 

applications in portable electronic products (e.g., cellular 

phones, tablet computers), wireless sensor networks (e.g., 

wireless body sensor networks), implantable medical 

devices, etc. 

Traditionally, the WPT technology has been 

classified into two types: radio frequency (RF) radiation 

and inductive coupling in low frequency (LF) bands. RF 

radiation, which is widely employed for exchanging data 

and information, can transfer only a small amount of 

power (e.g., a few milliwatts) because a majority of 

power is lost into free space [1]. The RF radiation 

generated by high directional antennas is usually used for 

WPT [2], such as applications in space solar power 

station [3]. It can transfer high power over long distances, 

but requires uninterrupted line-of-sight, which may be 

harmful to human bodies. On the other hand, the LF-

band inductive coupling can transfer power with high 

efficiency. The LF-band WPT is a mature technology 

(e.g., it has been widely used in electric toothbrush). 

Recently, an industry consortium has been formed to 

standardize this technology for charging mobile devices 

[4]. However, the LF-band WPT usually transfers power 

only over a very short range (e.g., a few centimeters). 

The recent progress in the WPT technology based 

on magnetic resonance coupling in high-frequency (HF) 

bands has opened up a new paradigm for mid-range 

power transfer [5]. Since then, studies on various aspects 

of the WPT via magnetic resonance coupling have been 

conducted [6-19]. The WPT via magnetic resonance 

coupling has also been extended into various applications 

[20-25], such as machinery rat [20], underwater robots 

[21], electric vehicles [22], LED TV [23], medical 

implants [24], wireless sensor networks [25], etc. 

The coil locations have strong impact on efficiency 

and resonant frequency of the WPT systems using 

magnetic resonance coupling. So far, however, they are 

not studied in-depth. In most previous studies, the coil 

locations of the WPT systems using magnetic resonance 

coupling are set either without any explanation or simply 

as equally spaced. There are only a few studies that 

discussed the coil location effects. In [7], a simple 

guideline for selecting the optimum repeater locations 

and numbers were provided. In the case of two repeaters, 

for example, only two simple rules have been stated: i) 

the distances of every two coils are equal; ii) the distance 

between the transmitter and the repeater is equal to the 
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distance between the repeater and the receiver. In [10], 

the relation between resonant frequency and distance 

was discussed by simply assuming that the total distance 

is fixed and the equal space is adopted. In [26], the 

effects of coil inductance and placement have been 

analyzed.   

In this work, effects of the coil locations of the four-

coil WPT system via magnetic resonance coupling are 

studied in-depth by virtue of full-wave electromagnetic 

solution and validated by measurements. In particular, 

the dependences of the power transfer efficiency, the 

resonant frequency and the bandwidth on important 

location parameters are carefully examined. Some 

important observations on effects of the coil locations are 

drawn based on theoretical studies, which are also 

verified by experiments. Design guidelines for optimal 

coil locations are presented for the WPT system, to 

which the highest transfer efficiency or the longest 

transfer distance can be achieved. 

 

II. SYSTEM MODEL 
Consider a four-coil WPT system via magnetic 

resonance coupling, which is a popular configuration for 

mid-range WPT via magnetic resonance coupling [5]. 

This WPT system is composed of four coils: driving coil, 

transmitting coil, receiving coil and load coil, as shown 

in Fig. 1. The driving coil (D) is a single loop (i.e., one 

turn) and connects to the voltage source. The transmitting 

coil (T) and receiving coil (R) are helix coils. The load 

coil (L) is also a single loop and connects to the load. The 

four-coil configuration can reduce the influence of the 

source and the load, and hence improve the efficiency of 

the WPT system. 
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Fig. 1. Schematic of four-coil WPT system. 

 

The four coils are resonant and contactless with each 

other. The distances (i.e., separations) between the driving 

and transmitting coils, between the transmitting and 

receiving coils and between the receiving and load coils 

are, respectively, denoted as d12, d23 and d34. The radius 

of the four coils, the height of the transmitting and 

receiving coils and the cross-sectional radius of the 

conductor coil wires are denoted as r, h and a respectively. 

Two types of system models for the WPT system via 

magnetic resonance coupling are shown in Fig. 2. Panel 

(a) shows the widely used equivalent circuit model for 

circuit analysis in the previous published literature, 

whereas panel (b) illustrates a more accurate model by 

virtue of full-wave electromagnetic theory. 

In panel (a), the driving, transmitting, receiving and 

load coils are numbered as coils 1, 2, 3 and 4 respectively, 

ijM  (i, j = 1, 2, 3, 4) denotes the mutual inductance 

between coil i and coil j (and jiij MM  ), Vs is ac 

excitation voltage source with an internal resistance 

denoted as RS. The circuit elements Ci, Li, and Ri  

(i = 1, 2, 3, 4) represent the parasitic capacitance, self-

inductance, and resistance of coil i respectively, RL is the 

load resistance connected to coil 4, and the current in coil 

i is denoted as Ii (i = 1, 2, 3, 4). 
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Fig. 2. System models of the WPT system. (a) Equivalent 

circuit model; (b) two-port S-parameter model. 

 

In panel (b), the WPT system is treated as an 

integrated (or tightly coupled) unit that is fully 

characterized as a two-port scattering parameter matrix 

(i.e., S-parameters) network, in which the transmitting 

port is denoted as port 1 and the receiving port is denoted 

as port 2. The S-parameter matrix can be obtained from 

the full-wave electromagnetic solution. The driving coil 

is excited by ac excitation voltage source Vs with internal 

resistance RS, while the load coil is connected to the load 

resistance RL. 

Instead of the equivalent circuit model, the more 

accurate two-port S-parameter model is adopted to study 

the WPT system by virtue of the full-wave electromagnetic 

solution. Based on the S-parameters, the power transfer 

efficiency of the WPT system can be evaluated as: 
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where L  is the reflection coefficient at the load 

LL RZ , and in is the reflection coefficient at port 1. 

They can be calculated as: 
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where 11S , 21S , 12S  and 22S are the S-parameters, as 

shown in Fig. 2 (b). If mismatching at the port 1 is 

omitted, the maximum transfer efficiency can be 

achieved when the load meets the following matching 

condition: 

  fSl

*

22 . (4) 

In the following section, the S-parameters are computed 

by using the full-wave electromagnetic solution in 

reference to a characteristic impedance.  500Z  

 

III. EFFECTS OF COIL LOCATIONS 
In this section, analysis on coil locations of the WPT 

system via magnetic resonance coupling, as shown in Fig. 

1, is presented by virtue of the full-wave electromagnetic 

solution. The full-wave electro-magnetic solution is 

obtained by a commercial full-wave electromagnetic 

simulation tool, called FEKO. The four coils are made of 

Cu. The geometrical and physical parameters are listed 

in Table 1. 

 

Table 1: Parameters of the WPT system 

Symbol Meaning Value Unit 

r1 Radius of driving coil 30 cm 

r2 Radius of transmitting coil 30 cm 

r3 Radius of receiving coil 30 cm 

r4 Radius of load coil 30 cm 

a 
Cross-sectional radius of 

coil wires 
0.3 cm 

h 
Height of the transmitting 

coil and the receiving coil 
20 cm 

N 

Number of turns of the 

transmitting coil and the 

receiving coil 

5.25 turn 

RS 
Internal resistance of 

voltage source 
50 ohm 

RL Load resistance 550 ohm 

 

The distance parameters include d12, d23 and d34. The 

total transfer distance between the driving coil and the 

load coil is defined as: 

 342312
dddd  . (5) 

Note that the heights of the transmitting coil and the 

receiving coil are not included in the total transfer 

distance.  

Electromagnetic simulations are performed by 

FEKO to study effects of coils locations (i.e., distances 

between pairs of adjacent coils) in terms of the power 

transfer efficiency, the resonant frequency and the 

bandwidth. Note that, in the WPT system via magnetic 

resonance coupling, the input power has little impact on 

the power transfer efficiency as theoretically expected 

since this WPT system is linear and the input power has 

been factored out from the power transfer efficiency as 

shown in its definition (1). 

 

A. Effects of variable d34 with fixed d12 and fixed d23 

In this subsection, effects of d34 on efficiency of the 

WPT system via magnetic resonance coupling are 

studied. It is assumed that d34 varies from 5 cm to 60 cm 

with a step size of 5 cm, whereas d12 is fixed at 15 cm 

and d23 is fixed at 150 cm. The efficiency versus d34 is 

plotted in Fig. 3, while the efficiency versus the 

frequency is depicted in Fig. 4. 
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Fig. 3. Efficiency versus d34 (with fixed d12 and fixed d23). 
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Fig. 4. Efficiency versus frequency (with fixed d12 and 

fixed d23). 

 

From Fig. 3, one can observe that when d34 increases 

from 5 cm to 60 cm, the power transfer efficiency increases 

at beginning, then becomes saturated, and finally 

decreases in a downward trend for the frequencies no 

larger than 10.474 MHz. When d34 is shorter than 10 cm, 

the closer the receiving and load coils are, the lower the 
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efficiency is. When d34 is between 10 cm and 20 cm, the 

efficiency is almost flattened within a small range from 

82.07% to 84.51%. When d34 is beyond 20 cm, the 

efficiency diminishes dramatically. 

The efficiency is the highest around the frequency 

of 10.42 MHz regardless the value of d34. When the 

operating frequency shifts roughly 1.5% from 10.42 MHz 

(such as 10.300 MHz and 10.600 MHz), the efficiency 

decreases dramatically as shown in Fig. 3. The highest 

efficiency can be obtained as 85.51% when d34 is 15 cm 

and the operating frequency is 10.42 MHz. 

From Fig. 4, one can observe that when d34 is shorter 

than 10 cm, the bandwidth is wide but the efficiency is 

not very high. For example, when d34 is 5 cm, the 

bandwidth is 0.174 MHz and the highest efficiency is 

only 74.97%.  

When d34 is between 10 cm and 20 cm, the 

bandwidth becomes narrower, but the highest efficiency 

is always above 80%. For example, when d34 is 10 cm, 

15 cm and 20 cm, the bandwidth is 0.144 MHz, 0.114 MHz 

and 0.090 MHz respectively, whereas the efficiency can 

be as high as 82.07%, 84.51% and 83.49% respectively. 

When d34 is longer than 20 cm, the bandwidth is still 

narrow and the efficiency becomes lower. For example, 

when d34 is 30 cm, the bandwidth is 0.042 MHz and the 

highest efficiency is 73.24%. When d34 is 60 cm, the 

highest efficiency is now as low as 23.49%.  

From Fig. 4, one can see that the resonant frequency 

is 10.408 MHz when d34 is 5 cm. The resonant frequency 

stays almost constant at 10.42 MHz for all d34 from  

10 cm to 60 cm. 

 

B. Effects of variable d23 with fixed d12 and fixed d34 

Effects of d23 on efficiency of the WPT system via 

magnetic resonance coupling are studied in this subsection. 

It is assumed that d23 varies from 20 cm to 300 cm with 

a step size of 20 cm, whereas d12 and d34 are fixed at  

15 cm. The efficiency versus d23 is plotted in Fig. 5, 

while the efficiency versus the frequency is depicted in 

Fig. 6. 

From Fig. 5, one can see that when d23 increases 

from 20 cm to 300 cm, the power transfer efficiency 

increases at beginning, then becomes saturated, and 

finally decreases considerably. When d23 is shorter than 

40 cm, the closer the transmitting and receiving coils are, 

the lower the efficiency is. When d23 is between 40 cm 

and 120 cm, the efficiency is almost flattened within a 

small range from 89.69% to 92.23%. When d23 is beyond 

120 cm, the efficiency diminishes dramatically.  

The efficiency is the highest at the frequency of 

10.455 MHz for most values of d23. When the operating 

frequency shifts roughly 1.5% from 10.455 MHz (such 

as 10.300 MHz and 10.600 MHz), the efficiency 

decreases dramatically as shown in Fig. 5. The highest 

efficiency can be obtained as 92.23% when d23 is 60 cm 

and the operating frequency is 10.455 MHz. 
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Fig. 5. Efficiency versus d23 (with fixed d12 and fixed d34). 
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Fig. 6. Efficiency versus frequency (with fixed d12 and 

fixed d34). 

 

From Fig. 6, one can see that when d23 is within  

40 cm, the bandwidth is very wide but the efficiency still 

has some room to improve. For example, when d23 is  

20 cm, the bandwidth is wider than 0.3 MHz while the 

highest efficiency is 84.28%.  

When d23 is between 40 cm and 120 cm, the 

bandwidth becomes narrower, but the highest efficiency 

is always above 85%. For example, when d23 is 80 cm 

and 120 cm, the bandwidth is 0.2 MHz and 0.065 MHz 

respectively, whereas the efficiency can be as high as 

92.15% and 89.69% respectively. 

When d23 is longer than 120 cm, the bandwidth is 

still narrow and the efficiency becomes much lower. For 

example, when d23 is 140 cm, the bandwidth is 0.025 MHz 

and the highest efficiency is 86.68%. When d23 is 300 cm, 

the highest efficiency is now as low as 23.82%.  

From Fig. 6, one can observe that the resonant 

frequency is 10.31 MHz when d23 is 20 cm. The resonant 

frequency decreases when d23 increases from 40 cm to 

120 cm. For example, the resonant frequency is 10.50 MHz, 

10.43 MHz and 10.42 MHz when d23 is 40 cm, 80 cm 

and 120 cm respectively. The resonant frequency stays 

almost constant at 10.42 MHz for all d23 beyond 120 cm. 

By comparing Fig. 5 to Fig. 3, one can see that the 

efficiency keeps high for a relatively large range of d23. 
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That is, the distance d23 between the transmitting and 

receiving coils has a wide range of the strong coupling 

state. Therefore, the distance d23 can be used for 

expanding the total transmission distance. 

 

C. Effects of variable d12 with fixed d23 and fixed d34 

Effects of d12 on efficiency of the WPT system via 

magnetic resonance coupling are studied in this subsection. 

It is assumed that d12 varies from 5 cm to 240 cm, 

whereas d23 is fixed at 150 cm and d34 is fixed at 15 cm. 

The efficiency versus d12 is plotted in Fig. 7, while the 

efficiency versus the frequency is depicted in Fig. 8. 

From Fig. 7, one can observe that when d12 increases 

from 5 cm to 240 cm, the power transfer efficiency is 

stable at beginning and then rapidly decreases. When d12 

is shorter than 60 cm, the efficiency varies slightly from 

84.14% to 84.51%. When d12 is beyond 60 cm, the 

efficiency diminishes dramatically.  
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Fig. 7. Efficiency versus d12 (with fixed d23 and fixed d34). 
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Fig. 8. Efficiency versus frequency (with fixed d23 and 

fixed d34). 

 

The efficiency is the highest at the frequency of 

10.42 MHz regardless the value of d12. When the 

operating frequency shifts roughly 1.5% from 10.42 MHz 

(such as 10.300 MHz and 10.600 MHz), the efficiency 

decreases dramatically as shown in Fig. 7. The highest 

efficiency can be obtained as 84.51% when d12 is 15 cm 

and the operating frequency is 10.42 MHz. 

From Fig. 8, one can observe that when d12 is within 

60 cm, the bandwidth decreases slightly along with 

increasing d12, but the highest efficiency is nearly 

constant. For example, when d12 is 5 cm and 60 cm, the 

bandwidth is 0.114 MHz and 0.096 MHz while the 

highest efficiency is 84.51% and 84.14% respectively.  

When d12 is longer than 60 cm, the bandwidth 

becomes narrower and the efficiency becomes much 

lower. For example, when d12 is 140 cm, the bandwidth 

is 0.042 MHz and the highest efficiency is 67.73%. 

When d12 is 240 cm, the highest efficiency is now down 

to 20.38%.  

From Fig. 8, one can see that the resonant frequency 

stays almost constant at 10.42 MHz for all d12 from 5 cm 

to 100 cm. The resonant frequency slightly decreases 

when d12 gets longer beyond 100 cm. For example, when 

d12 is 120 cm and 240 cm, the resonant frequency is 

10.408 MHz and 10.396 MHz respectively. 

By comparing Fig. 7 to Fig. 3, it is found that the 

distance d12 between the driving and transmitting coils 

has a wide range of the strong coupling state, which is 

very beneficial for expanding the total transmission 

distance via increasing d12. 

 

D. Effects under fixed total transfer distance 

Location effects on efficiency of the WPT system 

via magnetic resonance coupling are studied under a 

fixed total transfer distance d in this subsection. It is 

assumed that d is fixed at 200 cm, whereas d12 and d34 

are always equal and vary from 10 cm to 70 cm with a 

step size of 10 cm. Correspondingly, d23 = d – 2d12 varies 

from 180 cm to 60 cm with a step size of 20 cm. The 

efficiency versus d12 (i.e.,d34 ) is plotted in Fig. 9, while 

the efficiency versus the frequency is depicted in Fig. 10. 

From Fig. 9, one can observe that when d12 and d34 

increase from 10 cm to 70 cm (i.e., d23 decreases from 

180 cm to 60 cm), the power transfer efficiency increases 

at beginning and then decreases. From Fig. 9, one can 

observe that when d12 and d34 are shorter than 20 cm (i.e., 

d23 is longer than 160 cm), the closer the driving 

(receiving) and transmitting (load) coils are, the lower 

the efficiency is. Frequency splitting occurs when the 

distance between the driving (receiving) and transmitting 

(load) coils becomes too small and thus leads to lower 

efficiency. When d12 and d34 are longer than 20 cm, the 

efficiency diminishes dramatically. 

The efficiency is the highest at the frequency of 

10.42 MHz regardless the values of d12, d23 and d34. 

When the operating frequency shifts roughly 1.5% from 

10.42 MHz (such as 10.300 MHz and 10.600 MHz), the 

efficiency decreases dramatically as shown in Fig. 9. The 

highest efficiency can be obtained as 81.68% when d12 

and d34 are 20 cm (i.e., d23 is 160 cm) and the operating 

frequency is at the resonant frequency (i.e., 10.42 MHz). 
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Fig. 9. Efficiency versus d12 (with d23 = d -2d12, d34 = 

d12and fixed d). 
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Fig. 10. Efficiency versus frequency (with d23 = d -2d12, 

d34 = d12and fixed d). 
 

From Fig. 10, one can observe that when d12 and d34 

are within 10 cm (i.e., d23 is beyond 180 cm), the 

bandwidth is relatively wide although the efficiency is 

not very high. For example, when d12 and d34 are 10 cm 

(i.e., d23 is 180 cm), the bandwidth is 0.06 MHz while 

the highest efficiency is only 68.48%.  

When d12 and d34 increase from 20 cm to 50 cm (i.e., 

d23 decreases from 160 cm to 100 cm), the bandwidth 

becomes narrower and the efficiency becomes lower. 

When d12 and d34 are longer than 60 cm (i.e., d23 is shorter 

than 80 cm), the frequency splitting occurs and the 

efficiency is very low. 

 

E. Discussions 

Based on the preceding subsections, it is evident that 

the locations of four coils have strong impact on the 

efficiency, the resonant frequency and the bandwidth of 

the WPT system via magnetic resonance coupling. Some 

interesting observations can be drawn as follows. 

The operation of the WPT system via magnetic 

resonance coupling can be divided into three regions in 

terms of the distance between each pair of two coils: over 

coupling, strong coupling and under coupling. The 

system is in the over coupling state if two coils (e.g., 

driving and transmitting coils, transmitting and receiving 

coils, or receiving and load coils) are too close to each 

other. When the system is in the over coupling state, the 

power transfer efficiency is usually low due to frequency 

splitting. The closer the two coils are, the lower the 

efficiency is. In addition, the resonant frequency may 

shift to a lower frequency when the system is in over 

coupling.  

The system is in the under coupling state if two coils 

are too far away. When the system is in the under 

coupling state, the power transfer efficiency decreases 

along with increasing distance due to weakened coupling. 

The system is in the strong coupling state if two 

coils are at a suitable distance. The power transfer 

efficiency achieves the highest and keeps almost 

constant regardless the distance variation within a certain 

range. However, the efficiency can decrease dramatically 

if the operating frequency deviates too far from the 

resonance frequency. 

By adjusting locations of four coils, the WPT system 

via magnetic resonance coupling can be made to operate 

in different states. The system operates in the strong 

coupling state if the following conditions are satisfied:

rdr
3
5

123
2  , rdr 4233

4  , and rdr
3
2

343
1   

(where r is the coil radius). 

The distances d12, d23 and d34 have different impacts 

on the efficiency of the WPT system via magnetic 

resonance coupling. The distance d34 between the 

receiving and load coils has more significant impact on 

the efficiency than the distance d12 between the driving 

and transmitting coils. This is because the load coil is 

connected to the load. The variation of d34 changes the 

load impedance and therefore affects the power transfer 

efficiency.  

In the strong coupling state, the bandwidth is usually 

broadened and the resonant frequency shifts to a lower 

frequency. Interestingly, the distance d12 between the 

driving and transmitting coils has a wide range of the 

strong coupling state. Consequentially, the efficiency 

does not change much with the variation of d12 in the 

strong coupling state (as shown in Fig. 7), which is very 

beneficial for expanding the total transmission distance 

via increasing d12.  

The distance d23 between the transmitting and 

receiving coils has a wide range of the strong coupling 

state too. However, it has strong impact on the 

bandwidth and the resonant frequency of the WPT 

system via magnetic resonance coupling. Therefore, one 

may expect some small adjustment on the resonant 

frequency when the distance d23 is used for expanding 

the total transmission distance yet maintaining high 

efficiency.  

There exists an optimal set of coil locations for the 

WPT system via magnetic resonance coupling under the 

assumption of a fixed total transfer distance. When the 

highest efficiency is the objective, the locations of four 

coils should be assigned according to the following 
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guideline: rdd 5.03412   and rd 223  (where r is the 

coil radius).  

If the longest transfer distance is the objective under 

a fixed efficiency, one should hold d34 at the upper limit 

of the strong coupling region (e.g., rd
3
2

34  ), and then 

stretch d12 and d23 as much as possible over their strong 

coupling regions (e.g., d12 and d23 can be, respectively, 

as large as two and four times of the coil radius) until the 

efficiency hits the targeted value. 

Note that, although the results obtained for the 

specific coil radii 30 cm, the basic concept of this work 

is useful and can be a good guide for other radii. For a 

larger system, such as a “domino” system, which has 

coils more than four, similar analysis can be conducted 

and similar design guidelines are expected. The relay 

coils can be inserted between the transmitting coil and 

the receiving coil. The effects of these coil locations on 

WPT systems are similar to the effect of d23. 

 

IV. PRACTICAL VERIFICATION 
Experiments have been carried out to verify the 

theoretical studies by using a four coil WPT system via 

magnetic resonance coupling, as shown in Fig. 11. The 

geometrical and physical parameters of the system are 

the same as those listed in Table 1. Compensating 

capacitors are added to the driving, transmitting, receiving 

and load coils to make them resonant at the frequency of 

10.42 MHz. The related parameters are listed in Table 2. 

 

 
 

Fig. 11. Photograph of the WPT system for experiments. 

 

Table 2: Parameters of four coils 

Parameters Value 

Inductance of driving coil (µH) 1.7661 

Capacitance of driving coil (pF) 132.1 

Inductance of transmitting coil (µH) 51.275 

Capacitance of transmitting coil (pF) 4.5499 

Inductance of receiving coil (µH) 51.275 

Capacitance of receiving coil (pF) 4.5499 

Inductance of load coil (µH) 1.7661 

Capacitance of load coil(pF) 132.1 

 

The measurements are done by a network analyzer 

so that the frequency responses (both magnitude and 

phase) can be measured easily and accurately. The 

driving and load coils are connected to the ports of the 

network analyzer through SMA cables and connectors. 

The measured S-parameter is then converted into the 

system efficiency. 

In order to check the validity of the analysis in the 

preceding sections, several experiments are conducted 

for various location combinations as shown in Table 3. 

The experiments for both the highest efficiency and the 

longest transfer distance are performed. The measured 

results and simulated results are compared in Fig. 12.  

 

Table 3: Location combinations of four coils 

d (cm) d12 (cm) d23 (cm) d34 (cm) 

75 10 55 10 

80 10 60 10 

85 15 60 10 

90 15 60 15 

200 60 120 20 

220 60 140 20 

240 60 160 20 

250 70 160 20 

260 80 160 20 
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Fig. 12. Comparison of measurements and simulation 

results. 

 

From Fig. 12, one can observe the highest efficiency 

is obtained at d12 = 10 cm, d23 = 55 cm and d34 = 10 cm. 

The highest efficiency is 95.29%. The longest transfer 

distance is obtained at d12 = 80 cm, d23= 160 cm and  

d34 = 20 cm in which the efficiency is slightly higher than 

80%. The longest transfer distance d is about 260 cm for 

a given efficiency of 80%. The measurements agree very 

well with the simulation results, as shown in Fig. 12. 

 

V. CONCLUSION 
Effects of coil locations of the four-coil wireless 

power transfer (WPT) system via magnetic resonance 

coupling were studied in-depth here. The location 

parameters of four coils, including the distance d12 

between the driving and transmitting coils, the distance 

d23 between the transmitting and receiving coils, and the 

distance d34 between the receiving and load coils, have 

been used as design variables. It was found that all these 

three location parameters have impact on the efficiency, 

the resonant frequency and the bandwidth of the WPT 
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system via magnetic resonance coupling.  

The operation of the WPT system via magnetic 

resonance coupling can be divided into three regions in 

terms of the distance between each pair of two adjacent 

coils: over coupling, strong coupling and under coupling. 

Different operating states can be achieved by adjusting 

locations of four coils.  

The distances d12, d23 and d34 have different kinds of 

impact on the efficiency of the WPT system via magnetic 

resonance coupling. The distance d34 has more significant 

impact on the efficiency than the distance d12. 

Interestingly, the distance d12 has a wide range of the 

strong coupling state. The efficiency does not change 

much along with variation of d12 in the strong coupling 

state. The distance d23 has also a wide range of the strong 

coupling state. However, it has strong impact on the 

bandwidth and the resonant frequency of the WPT 

system via magnetic resonance coupling. Finally, design 

guidelines for optimal coil locations have been presented 

for the WPT system, to which the highest transfer 

efficiency or the longest transfer distance can be achieved. 
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