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Abstract ─ In this paper, we propose a hybrid inversion 

approach to reconstruct the profile of arbitrary three-

dimensional (3-D) defect from magnetic flux leakage 

(MFL) signals in pipeline inspection. The region of pipe 

wall immediately around the defect is represented by  

an array of partial cylinder cells, and a reduced forward 

FE model is developed to predict MFL signals for any 

given defect. The neural network (NN) method is used 

at first to give a coarse prediction of the defect profile, 

and the prediction is then utilized as one original 

solution of the genetic algorithm (GA) to search for  

the global optimum estimate of the defect profile. To 

demonstrate the accuracy and efficiency of the proposed 

inversion technique, we reconstruct defects from both 

simulated and experimental MFL signals. In both cases, 

reconstruction results indicate that the hybrid inversion 

method is rather effective in view of both efficiency 

and accuracy. 

 

Index Terms ─ Defect reconstruction, genetic algorithm, 

magnetic flux leakage, neural network, pipeline 

inspection. 

 

I. INTRODUCTION 
Magnetic flux leakage (MFL) inspection is widely 

used for detecting corrosion defects in pipelines for oil 

and gas [1]. The inspection devices, referred as in-line-

inspection (ILI) tools, are designed for autonomous 

operation in the pipeline. Once defects have been 

identified, an equally important problem is the 

assessment of the size or severity of the defect [2]. 

In the past, inverse MFL problems were solved 

based on neural networks [3-5], gradient-based 

optimization methods [6, 7], GA-based optimization 

methods [8] and other methods [9, 10]. Neural networks 

are advantageous in cases where rapid inversions are 

required. However, their main drawback is that they 

require a large database for training. The performance 

of neural networks depends on the data used in training 

and testing. When the test signal is no longer similar to 

the training data, performance degrades. In contrast, 

methods embedding the physical model into the MFL  

signal inversion process do not require a large database. 

The physical model and the optimization procedure are 

crucial for these inversion methods. On the issue of 

convergence, gradient-based optimization often fails to 

converge to the global optimum in the presence of 

multiple local optima, since the optimization problem 

for defect reconstruction from MFL signals is not a 

unique solution one. The GA-based approach, on the 

other hand, begins with a large set of initial search 

points using well-defined probabilistic tools to guide a 

search towards regions in the search space that are more 

likely to contain the global optimum. The GA usually 

begins with a randomly generated set of original 

solutions, which may take a long time to converge to 

the global optimum. Therefore, a suitable selection of 

the initial search points is rather important for the GA-

based approach to improve the efficiency.  

In this paper, we propose a hybrid method for 3-D 

defect reconstruction from MFL signals in pipeline 

inspection. We develop a reduced forward model of 

pipe in MFL inspection, and combine NN to GA in 

inversion process by applying the prediction result of 

NN as one initial solution of GA. Results of defect 

reconstruction show that the proposed method has 

outstanding performance for both simulated and real 

experimental MFL signals.  

The organization of this paper is as follows. In 

Section II, we introduce the reduced forward FE models 

of pipe and characterization of defect in MFL inspection. 

In Section III, we summarize the application of NN and 

GA to 3-D defect inversion. Section IV gives experimental 

results based on simulated and realistic experimental 

MFL data, and Section V gives the conclusions. 
 

II. FORWARD MODEL OF MFL 

INSPECTION 
Figure 1 depicts the corresponding magnetic circuit 

for an ILI tool for pipe inspection. Permanent magnets 

magnetize the pipe wall to saturation or near saturation 

flux density, typically in the axial direction. As shown, 

the magnetic leakage fields from the pipe wall are 

detected using uniformly-spaced Hall or coil sensors. 
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Fig. 1. Simplified magnetic circuit of an ILI tool. 
 

A. Reduced forward model 

Based on the magnetic circuit of the ILI tool, we 

create a 90-degree forward FE model of MFL inspection 

as shown in Fig. 2 (a), including pipe wall, steel, 

permanent magnets, air and defect [11, 12]. Compared 

with the complete 360-degree model, this model could 

reduce much computation work. Then, a further reduced 

forward model is proposed as shown in Fig. 2 (b). The 

reduced forward model only consists of air, nonlinear 

pipe material and permanent magnets embedded in the 

pipe wall. The size and distance of permanent magnets 

could be adjusted so that the simulated MFL signals 

agree with the real signals.  
 

 
 

Fig. 2. (a) Basic 90-degree forward model. (b) Reduced 

forward model. 
 

For the basic forward model and the reduced 

forward model, the related parameters together with 

detailed explanations are presented in Table 1, and the 

Characteristic curves of nonlinear magnetic materials 

used in the forward model are presented in Fig. 3. 

The results of simulation show that, the reduced 

model only brings less than 5% error while taking one 

fifth time as the basic model does. Figure 4 shows two 

samples of MFL images of metal loss defects using the 

reduced model. 
 

 
 

Fig. 3. Characteristic curves of nonlinear magnetic 

materials used in the forward model. 

Table 1: Related parameters for the forward model 

Parameter Value Unit 

Pipe diameter 457 mm 

Pipe thickness 14.3 mm 

Permanent magnet width 80 mm 

Permanent magnet height 30 mm 

Brush width 80 mm 

Brush height 50 mm 

Back height 20 mm 

Magnetic pole spacing 1000 mm 

Relative permeability 1.26 - 

Coercive force 836 KA/m 

Lift off value 3 mm 

 

 
 

Fig. 4. Simulated MFL images for metal-loss defects 

using the reduced forward model: (a) internal defect, 

100.1 mm×14.3 mm×5.7 mm; (b) external defect,  

42.9 mm×42.9 mm×8.6 mm.  
 

B. Defect characterization 

The forward computational problem consists of 

using the reduced FE model to efficiently obtain the 

magnetic flux field profile for any defect in the pipe. 

The region of pipe wall immediately around the defect 

constitutes the ‘region of interest’ (ROI). To characterize 

different defect shapes, the radial depth, the tangential 

width and the axial length of ROI are divided into 7, 10 

and 10 parts respectively. Consequently, the ROI could 

be represented by an array of 7×10×10 partial cylinder 

cells as illustrated in Fig. 5. 
 

 
 

Fig. 5. Defect characterization with 7×10×10 basic 

model for inversion. 
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The magnetic conductivity of each cell could be 

made equal to that of air or iron, resulting in different 

geometries of the defect. By doing this, any particular 

defect in the whole defect area could be characterized 

by a set of 100 depths: 1 2 100, ,..., ,d d d where  di 0,1, ,7 . 
 

Thus, the value of a particular depth is encoded as a 3 

bit binary string, and the parameter set for the whole 

defect area can be represented by a 300 bit binary 

string. 
 

III. INVERSION PROCEDURE USING  

NN AND GA 
In order to take full use of the advantages of both 

the NN and the GA method, we propose a hybrid 

method for the defect reconstruction from MFL signals, 

i.e., to use the results of NN inversion as one initial 

solution for the GA method. 
 

A. NN prediction 

As shown in Fig. 6, a feed-forward NN with a 

single hidden layer is used to predict the defect profile 

for the initial solution of GA. The input of the NN 

consists of feature parameters of MFL signals scanned 

over the test-pipe, and the output are the parameters of 

defects corresponding to the MFL signals. The databases 

of both MFL signals and corresponding defect parameters 

are separated into training, validation and verification 

sets. 
 

 
 

Fig. 6. The feed-forward NN used for prediction. 
 

The training process starts with only one hidden 

node, and for each training epoch a new node is created. 

The new input-hidden connections receive random 

weights and the rest of the weights are obtained by 

solving (1) with the least square minimization based on 

the singular value decomposition:  
1

1 2( ) ( )io ih hoA W f A W W f B     , (1) 

where A and B represent the input and output training 

data sets, 
1f  and 

2f  are nonlinear activation functions 

for hidden and output nodes,  ihW  the “randomly-fixed” 

input-hidden weights, and  ,ioW  hoW  the matrices 

containing unknown weights, are the input-output and 

the hidden-output inter-connection weights, respectively. 

To generate the training data sets, the reduced 

forward model shown in Fig. 2 (b) and the defect 

characterization shown in Fig. 5 were used to get 

simulated MFL signals. Considering the object for NN 

inversion result in this paper, only cuboid defects are 

simulated. Therefore, the trained NN could only 

provide a cuboid prediction for any arbitrary defect 

profile as one initial solution. 

 

B. GA inversion process 

The flowchart of iterative inversion process using 

GA for 3-D defect reconstruction is shown in Fig. 7. 

The inverse problem is solved by minimizing an 

objective function, representing the difference between 

the forward model predicted and the realistic measured 

MFL signal. When the difference is below a pre-set 

threshold, the defect profile represents the desired 

solution. The various issues related with the formulation 

of the inversion process are described below. 

 

 
 

Fig. 7. Iterative inversion flowchart for 3-D defect 

reconstruction. 

 

As all the three components (radial, tangential and 

axial) of magnetic flux density carry the information of 

defect profile, they are all chosen as input signals for 

the inverse optimization procedure when simulated 

MFL signals are used. However, only the axial 

component is used when the inversion is conducted 

based on realistic measured MFL data, because only the 

axial component is detected by the ILI tool. 

The minimization of an error between measured 

and predicted MFL signals can be recast as maximizing 

of the following fitness function: 

1

1

1 || ||
N m FEM

i ii

F
C B B




 

, 
(2) 

where N is the number of points taken on the signal and 

C is constant. The global maximum value of F is 1, 

corresponding to the case the predicted and measured 

MFL signals are exactly the same. It should also be 

noted that in case of the error reaching a local minimum 

other than the global minimum of zero, the relative ratio 

between the corresponding local and global maximums 

of F is determined by the constant C. 

As shown before, the results of NN inversion is 

taken as one initial solution for the GA inversion 

process. This will bring significant help in increasing 
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both efficiency and possibility for the GA to reach the 

global optimum solution, which will be presented in 

Section IV. At the same time, 7 randomly generated 

original solutions are also used. Furthermore, 2 special 

300-bit binary strings, composed of only ‘0’ and only 

‘1’ respectively, are added to the initial population for 

GA in order to keep the diversity of population. 

When the original solutions have been selected, a 

fitness function is used as a measure of closeness of 

each member in the population to the global optimum 

solution. Subsequently, a new population is generated 

by applying genetic operators including reproduction, 

crossover and mutation on the previous population. The 

selection mechanism for reproduction favors the highly 

fit members, so that the members more close to the 

global optimum are assigned higher probabilities for 

producing children. Crossover operations ensure that 

the new population inherits highly fit features, while 

mutation may add previously unexplored features into 

the new population. With this, the population drifts to a 

global or near global solution after a few number of 

generations in the iterative process. 
 

IV. EXPERIMENTAL RESULTS 
In this paper, reconstruction is implemented using 

biased Roulette-Wheel algorithm with a two-point 

crossover, and the mutation probability varies between 

0.3 and 0.5. The iterative process is terminated when 

the population of the GA has been updated for 200 

times, and at last smoothing is conducted to produce a 

better defect profile. 

Experiments of 3-D defect reconstruction are 

conducted based on 3-D simulated MFL signals and  

1-D measured MFL signals. An internal 100.1 mm× 

14.3 mm×5.7 mm cuboid defect (Fig. 8 (a)), an external 

42.9 mm×42.9 mm×8.6 mm cuboid defect (Fig. 9 (a)), 

and an external 42.9 mm×7.15 mm globoid defect (Fig. 

10 (a)) are simulated using the reduced forward model. 

At the same time, the ILI tool is used to measure the 

axial MFL signals of an 18-inch and 14.3 mm-thick 

pipe, on which the same defects as the three simulated 

ones have been artificially made.  

The reconstruction is firstly conducted using 

general GA with initial population composed of 10 

randomly generated original solutions. Figure 8 (b), 

Fig. 9 (b), and Fig. 10 (b) depict the final predicted 

profiles of the three defects based on 3-D simulated 

MFL signals. As comparison, Fig. 8 (c), Fig. 9 (c), and 

Fig. 10 (c) show the predicted defect profiles based on 

1-D measured MFL signals. It can be seen that the 

predicted profiles using 3-D simulated MFL signals 

match the real defects very well, while at the same time, 

the inversion results using 1-D measured MFL signals 

are not so good within a fixed number of iterations. 

Possible reasons could be lack of enough information 

carried by the radial and tangential components of 

magnetic flux density together with error between 

simulated and realistic MFL signals. 
 

 
 

Fig. 8. Reconstruction of internal cuboid defect, 100.1 mm×14.3 mm×5.7 mm: (a) real defect profile; (b), (c) 

reconstructed defects based on 3-D simulated and 1-D measured signals, using general GA with randomly generated 

initial population; (d) prediction result of NN inversion; (e), (f) reconstructed defects based on 3-D simulated and 1-

D measured signals, using GA with initial solution from NN inversion. 
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Fig. 9. Reconstruction of external cuboid defect, 42.9 mm×42.9 mm×8.6 mm: (a) real defect profile; (b), (c) 

reconstructed defects based on 3-D simulated and 1-D measured signals, using general GA with randomly generated 

initial population; (d) prediction result of NN inversion; (e), (f) reconstructed defects based on 3-D simulated and 1-

D measured signals, using GA with initial solution from NN inversion. 

 

 
 

Fig. 10. Reconstruction of external globoid defect, 42.9 mm×7.15 mm: (a) real defect profile; (b), (c) reconstructed 

defects based on 3-D simulated and 1-D measured signals, using general GA with randomly generated initial 

population; (d) prediction result of NN inversion; (e), (f) reconstructed defects based on 3-D simulated and 1-D 

measured signals, using GA with initial solution from NN inversion. 

 

Then the reconstruction is conducted again using 

the proposed hybrid inversion method, with the 

prediction of NN as one original solution of the GA 

inversion. The prediction results for the three defects 

from NN are shown in Fig. 8 (d), Fig. 9 (d) and Fig. 10 

(d). Figure 8 (e), Fig. 9 (e), and Fig. 10 (e) depict the 

final predicted profiles of the three defects based on 3-

D simulated MFL signals. Similarly, Fig. 8 (f), Fig. 9 

(f), and Fig. 10 (f) show the predicted defect profiles 

based on 1-D measured MFL signals. Compared with 

former inversion results using general GA, reconstructed 

defects match the real ones better when prediction 

results of NN are used as the original solutions of the 

GA in the hybrid inversion procedure. In fact, the 

efficiency of defect reconstruction has been improved 

significantly, and the accuracy of reconstruction has  

increased within same time. 

The reconstruction errors in different situations are 

then calculated and summarized as Table 2. The larger 

errors of reconstructed results using general GA with 

randomly generated original solutions demonstrate that 

the optimization fails to converge to the global minimum 

solution within fixed number of iterations. When the 

prediction of NN is used as original solution in the 

hybrid inversion procedure, the iterative GA could 

produce obviously better results of defect reconstruction. 

To further testify the robustness of the proposed 

hybrid inversion procedure, a randomly generated 

internal defect as Fig. 11 (a) is simulated using the 

reduced forward model to get corresponding 3-D 

simulated MFL signals. The reconstructed defect profile 

using the proposed hybrid inversion procedure, based 
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on the basic 7×10×10 defect model shown in Fig. 5, is 

shown in Fig. 11 (b). Then the hybrid inversion 

procedure is conducted again, based on a refined 

15×20×20 defect model, to get a new reconstructed 

defect profile (Fig. 11 (c)). The results of reconstruction 

show that the proposed hybrid inversion procedure is 

rather effective and robust even for randomly generated 

defect profile. Furthermore, the accuracy of reconstruction 

could get improved using a refined defect model 

extended from the basic one shown in Fig. 5. 

 

Table 2: Reconstruction errors of different defects 

Defect/mm 
Simulated Signals Measured Signals 

General GA Hybrid General GA Hybrid 

Internal cuboid 100.1×14.3×5.7 0.12 0.05 0.21 0.14 

External cuboid 42.9×42.9×8.6 0.13 0.05 0.22 0.15 

External globoid 42.9×7.15 0.25 0.12 0.41 0.28 

 

 
 

Fig. 11. Reconstruction of randomly generated defect using proposed hybrid inversion method based on 3-D 

simulated MFL signals: (a) real defect profile; (b) reconstructed defect using basic 7×10×10 defect model; (c) 

reconstructed defect using refined 15×20×20 defect model. 
 

V. CONCLUSION 
In this paper, a hybrid inversion approach is 

presented to reconstruct the 3-D defect profile from 

MFL signals in pipeline inspection. The reduced FE 

forward model of MFL inspection is developed, and the 

defect area is represented by an array of 7×10×10 

partial cylinder cells. The NN is used at first to get a 

prediction of the defect, which is then utilized as one 

original solution of the GA to search for the global 

optimum estimate of the defect profile. Accuracy and 

efficiency of the proposed hybrid inversion method is 

demonstrated by the reconstruction results from both 

simulated and experimental MFL signals. Comparison 

between results from simulated and measured MFL 

signals also show that all the three components, instead 

of only the axial or radial component, of MFL signals 

in pipeline inspection should be detected for better 

reconstruction results. Furthermore, the accuracy of 

reconstruction could get improved using a refined 

defect model. 

Future work will concentrate on optimizing the 

forward model to reduce time consumption and refining 

the defect model to increase accuracy of defect 

prediction. Besides, more kinds of defect shape should 

be covered in the experiment to test the proposed 

inversion method. 
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