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Abstract ─ A combined 2-D interpolation method is 

proposed for the efficient electromagnetic scattering 

analysis of precipitation particles over a broad frequency 

and angular band. This method combines the cubic 

spline interpolation method and the Steor-Bulirsch 

model. The cubic spline interpolation method is applied 

to model the induced current over wide angular band. 

The Steor-Bulirsch model is applied to accelerate 

calculation over wide frequency band. In order to 

efficiently compute electromagnetic scattering, sparse-

matrix/canonical grid method (SM/CG) is applied to 

accelerate the matrix vector multiplication in EFIE. 

Therefore, the calculation time of frequency and angular 

sweeps become shorter. Numerical results demonstrate 

that this combined method is efficient for wide-band 

scattering calculation of precipitation particles with high 

accuracy. 

 

Index Terms ─ Electromagnetic scattering, frequency-

angle domain interpolation, precipitation particles, 

sparse-matrix/canonical grid method. 
 

I. INTRODUCTION 
In recent years, for environmental applications in 

remote sensing, the research on characterization of the 

electromagnetic wave interaction with complex rainfall 

particles has become more and more important [1-4]. 

Several analytical methods based on wave theory, such 

as quasi-crystalline approximation, are frequently used 

[5]. However, these approaches are not able to capture 

the essential physics of many real world problems [6]. 

Alternatively numerical technologies can be used to  

deal with scattering of complex rainfall particles, for 

instance, the method of moment (MoM) [7]. While  

the MoM can provide accurate solution of complex 

media scattering [8-9], the main disadvantages of MoM 

are significant calculation time and large memory 

requirements for the storage of impedance matrix. In 

order to alleviate these bottlenecks, a series of accelerate 

methods are proposed, such as fast multiple method 

(FMM) [10], as well as sparse-matrix/canonical grid 

(SM/CG) [11] method, which is proposed as an efficient 

method for calculating the scattering from three-

dimensional dense media [12-13].  

The radar cross section (RCS) contains both 

frequency and angle information simultaneously. In 

many practical applications, it is desirable to predict  

the monostatic RCS of a target in both the frequency 

domain and spatial domain simultaneously. Although 

the computational complexity and memory requirement 

can be reduced by the SM/CG method, we still have to 

repeat the calculations at each frequency or angle of 

interest to obtain the RCS over a wide frequency-angle 

band. In order to alleviate this difficulty, many 

interpolation methods have been proposed and applied 

for acceleration, such as the asymptotic waveform 

evaluation (AWE) [14] method and the model-based 

parameter estimation (MBPE) [15] method. However, 
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there are difficulties in implementing these methods. For 

the widely used AWE [16], sometimes it is difficult to 

obtain the derivatives of the impedance matrix and the 

induced current vector. Singularity problem is the main 

weakness of the MBPE method [15] as it needs matrix 

inversion to get the coefficients of the substitute model. 

In this paper, we investigate a novel adaptive 

frequency-angle domain interpolation method based on 

Stoer-Bulirsch model [17-19] and cubic spline algorithm 

[20], combined with SM/CG method for fast analysis of 

precipitation particles scattering over broad frequency-

angle band. In frequency domain, two approximate 

rational function models are required in Stoer-Bulirsch 

algorithm for each iterative step. Both models could be 

constructed by using functions with the same set of 

samples. With the increase of samples, the difference 

between the two models will decrease. Therefore, when 

the termination criterion is achieved, both of approximate 

models could be used as the interpolation model for final 

results. In angle domain, cubic Hermite interpolation 

formulation is the basic model of cubic spline (CS) 

method, which utilizes the information of C1-continuous 

to evaluate the first derivative of the incident current 

vector instead of solving the large linear equations. 

Compared to traditional extrapolation or interpolation 

methods, such as AWE and MBPE, this novel method 

needs no matrix inversion and avoids calculating 

derivatives. This advantage and SM/CG combined 

together virtually yield an extremely efficient technique 

that seems something of a novelty compared to both 

AWE and MBPE method. 

This paper is structured as follows. In Section II we 

describe the EFIE formulation and the SM/CG method. 

Section III describes the basic theory of the novel 

combined 2-D adaptive interpolation method based on 

cubic spline interpolation method in angle domain and 

Stoer-Bulirsch model in frequency domain with coarse-

to-fine hierarchy. Numerical results which demonstrate 

the accuracy and efficiency of the proposed method are 

given in Section IV. Conclusions and comments are 

provided in Section V. 

 

II. EFIE FORMULATION AND SM/CG 

METHOD 
When a finite body of arbitrary shape, with 

permittivity ε(r) and conductivity σ(r), is exposed in 

free space to a plane electromagnetic wave, the induced 

current could be accounted for by replacing the body 

with an equivalent free-space current density Jeq, which 

can be written as: 

           0 .r r r r r     J E Eeq j      (1) 

The conduction current is the first term of (1), 

whereas the second term represents the polarization 

current. ε0 is the free-space permittivity and E(r) is the 

total electric field inside the body. According to 

reference [9], the scattered field Es at an arbitrary point 

inside the body can be expressed as: 
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In (4), k0=ω(μ0ε0)1/2and μ0 is the permeability of free 

space. The symbol pv in (2) represents the principal 

value of the integral. The sum of the incident electric 

field Ei and the scattering field Es can be written as: 

    ( ) .r r r E E E
i s

 (5) 

By substituting (2) into (5), the integral equation for 

E(r) can be demonstrated as: 
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where Ei(r) is the known incident electric field, and E(r) 

is the unknown total electric field in (6). By using 

moment methods, (6) could be transformed into a matrix 

equation [9]: 
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In the following, we rewrite (7), let G denote the 

coefficient matrix in Equation (7), E={En}, and b={Ei
m} 

for simplicity. Then, the matrix Equation (7) can be 

symbolically rewritten as: 

 GE = b. (8) 

To employ sparse-matrix/canonical grid method 

(SM/CG) to accelerate the matrix vector multiplication, 

the whole structure is enclosed in a rectangular region at 

first and then we recursively subdivides it into small 

rectangular grids. The impedance matrix G is decomposed 

into the sum of a sparse matrix Gs denoting the strong 

neighborhood interactions, which can be computed 

directly by MoM and a dense matrix Gw, denoting the 

weak far interactions: 

 G = Gs + Gw. (9) 

The majority of computation of an iterative method 

is to perform the matrix-vector multiplication between 

Gw and E. We translate the original basis functions  

on the triangular elements to the rectangular grids in 

SM/CG. After we put Taylor expansion of the Green’s 

functions [9] in here that the matrix Gw is further written 

as: 
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where K is the total number of terms of the expansion. 

Each term in the series corresponds to a Taylor series 

expansion term [11-12]. If the expansion order of Taylor 

series is selected too small, the uncertainty of calculation 

accuracy will be caused. However, when the expansion 

order is chosen too large, it will lead to a large 

consumption of computing resources, as well as 

calculation time. Through numerical experiments, the 

Taylor expansion order is chosen to be 2 in our 

experiment, as this choice is a tradeoff between accuracy 

and efficiency. Finally, the matrix-vector in SM/CG will 

be efficiently done using O(NlogN) FFT-based methods, 

could be represented: 

     .    G E T G T E
w

ti i si

i

 (11) 

Each term in the summation consists of a pre-

multiplication of the current vector with a block-

diagonal matrix [Tsi] followed by a multiplication with 

a block-Toeplitz matrix [Gi] and a post-multiplication 

with another block-diagonal matrix [Tti]. 

 

III. TWO DIMENSIONAL ADAPTIVE 

COMBINED INTERPOLATION 

TECHNIQUE IN FREQUENCY-ANGLE 

DOMAIN 

In wide frequency-angle band scattering analysis of 

precipitation particles, repeated solution of (8) is required 

at each incident direction and frequency. In order to 

improve efficiency, in this section, a novel combined  

2-D adaptive interpolation technique is proposed to 

accelerate precipitation particles electromagnetic 

properties calculation. This adaptive strategy with the 

idea of coarse-to-fine hierarchy which considered as  

an iterative process is proposed to generate a set of 

nonuniform sampling nodes. There are two basic 

problems that need to be emphasized in the approach. 

One is how to keep the iterative process going on and 

the other is when to stop the process.  

Both of problems are controlled by error. 

Correspondingly, there are two types of error that need 

to be defined. The error for judging whether or not more 

samples are required is called convergence error (CE), 

and the error used to locate the next possible sample  

is called maximum error (ME), which ensures a 

successively adaptive process. A good definition of CE 

leads to high precision and a good definition of ME leads 

to few samples. 

 
A. Cubic spline method in angle domain 

In angular domain, two interpolation models are 

applied, while one is linear interpolation model and the 

other is cubic spline interpolation model. The number of 

sampling nodes will be enough when linear model and 

cubic spline model obtain almost the same result. As a 

result, CE is defined as a tolerance between the two 

different models. The whole sampling process will end 

off until the error between the two models is smaller than 

CE.  

Assuming that the sampling nodes in angular 

domain are φ0, φ1, … , φn which divide the whole range 

into several intervals. Within each interval such as [φi-1, 

φi], I(φ) could be expanded as a third-order polynomial 

on φ. According to Hermite interpolation theory [20], 

the interpolation formula of I(φ) can be described as: 
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where φi is the sampling point and hi=φi-φi-1. Obviously, 

I(φi) and I′(φi) are needed in order to estimate the value 

of I(φ) in the angle range [φi-1, φi]. Suppose the number 

of sampling points to be n, then n times of solution is 

needed to obtain the value of I(φi) (i=1,2,…,n), when 

another n times of solution is also required to get 

corresponding derivative value I′(φi) (i=1,2,…,n). 

Therefore, the times of solution of Equation (8) is 2n 

[20]. It is thus a waste of time to compute the first 

derivative of induced current vector of each sampling 

node. 

Cubic-spline interpolation method applies another 

way to obtain the first derivative of each sampling node 

instead of solving the linear Equation (8) repeatedly 

[20]. This method just needs to compute the first 

derivative of φ0 and φn by (1), which has been proved to 

be unnecessary. We can put them into zero under the 

natural boundary condition [20]. The first derivative of 

other sampling points are then given by: 
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Due to the large time consumed in calculating the 

derivative, the cubic-spline interpolation approach is 

able to reduce a great deal of cost in angular domain. 
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B. Store-Bulirsch algorithm in frequency domain 

In frequency domain, the interpolation function is 

described in the form of a fractional polynomial function 

with numerator of order N and denominator of order D 

for the frequency f by: 
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For given orders of N and D, the coefficients an and 

bd can be determined from k=N+D+1 samples of S(f)  

by solving a set of linear systems. The Store-Bulirsch 

algorithm does not require the inversion of matrix to get 

the coefficients of the rational function. The main idea 

of the algorithm is given as follows: 

Suppose that there are a group of samples (fi, S(fi)), 

i=1,…,k available for obtaining a rational function 

interpolation of function value S(f) at any f∈ (f1,f2), 

whereas the explicit expression of rational function is 

unknown. The recursive process of Store-Bulirsch 

algorithm starts with the initial condition: 

 ,1 ( ), 1, , , i iR S f i k  (15) 

which constructs the first column of the triangle table. 

Starting from the second column, all elements are 

obtained using a recursive formula associated with two 

or three elements in the preceding columns. 

Store-Bulirsch algorithm provides two ‘triangle 

rules’: 
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and one ‘rhombus rule’: 
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Based on these recursive rules, SB algorithm is 

organized as follow. 

Let the whole frequency band to be defined from f1 

to f2. The results recursively calculated by formula (16), 

(17), (18) are S1(f), S2(f), and S3(f) respectively. A testing 

point within the frequency band of interest is ft and a 

sample is fs. The true value from electromagnetic 

simulation or from experiment is denoted as EM(fs). In 

the interpolation process, a rational interpolation is 

implemented by using a distinct combination of the 

above three recursive rules. Pair one ((16) and (17)) and 

pair two ((16) and (18)) are alternately utilized to find 

the point at which the maximum sampling error occur, 

then add this sample into the sample group, until three 

recursive formulas, i.e., (16), (17) and (18), are 

sufficiently close to each other. In this paper, Equation 

(16) is used for interpolating frequency response at any 

given frequency f for final results. Specific algorithm 

steps are as follows. 

Step 1: Set fs1=f1 and fs2=f2, and compute EM(fs1) 

and EM(fs2). 

Step 2: Choose Equations (16) and (17) as the 

recursive formula and find the point at which the 

maximum sampling error occur, say at point fs3, such 

that, 

 
1 3 2 3 1 2( ) ( ) max ( ) ( ) .s s ti ti

i
S f S f S f S f    (19) 

Step 3: Compute EM(fs3). If a given convergence 

error (CE) is larger than the sampling error in step 2, that 

is 1 3 2 3( ) ( )s sS f S f CE  , then the process switches to 

step 6 for termination. Otherwise, add the sample {fs3, 

EM(fs3)} into the sample group and goes to next step for 

finding next samples. 

Step 4: Change the recursive formula into (16) and 

(18), compare the sampling value at all testing points 

and find the point at which the maximum sampling error 

occurs, say at point fs4, such that, 

 
1 4 3 4 1 3( ) ( ) max ( ) ( ) .  s s ti ti

i
S f S f S f S f  (20) 

Step 5: Compute EM(fs4), if 1 4 3 4( ) ( ) , s sS f S f CE  

it means that the samples obtained are enough for the 

sampling for rule (16). Then the process goes to step 6. 

Otherwise, add the point {fs4, EM(fs4)} into the sample 

group and go back to step 2 to find next samples. 

Step 6: Suppose sufficient samples have been 

obtained for sampling. Saving the sample group {(fsi, 

EM(fsi)), i=1,…,N}, which is the only required knowledge 

for rational function interpolation, and N is the number 

of samples in the last step. 
 

C. Two-dimensional combined adaptive interpolation 

technique 

For a desired frequency domain and angular 

domain, Fig. 1 shows the adaptive process for 2-D 

combined interpolation technique in details. The coarse-

to-fine hierarchy strategy is applied to carry out 2-D 

adaptive sampling. Compared to 1-D adaptive strategy 

which is applied to decide the sampling node, 2-D 

adaptive strategy is used to select the “sampling line”. 

The dashed in Fig. 1 is the “sampling line” in adaptive 

sampling process, which divides the whole surface into 

many lattices.  Specifically speaking, ME which defined 

by the difference between linear model and cubic spline 

model is applied to decide the location of “good 

sampling line” in angular domain, while Store-Bulirsch 

algorithm is utilized to obtain the location of “good 

sampling line” in frequency domain. As same as 1-D 

method, the process will end when there is no “sampling 

line” needed. When the value of CE is set appropriately, 

the meshing lines could avoid losing performance and  
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accuracy. 

It is assumed that the whole surface is defined by 

[f1, fm] × [φ1, φm]. A testing point within the range of 

interest is (ft1, φt2) and a sampling point is (fs1, φs2). The 

incident current vector for (f, φ) is I(f, φ) and the 

electromagnetic properties from EM simulation is 

denoted as rcs(f, φ). 

Step 1: Initialize four sampling points, (f1, φ1), (f1, 

φn), (fm, φ1) and (fm, φn). Then acquire I (f1, φ1), I (f1, φn), 

I (fm, φ1) and I (fm, φn). 

Step 2: Assume there are m×n samples on the whole 

surface, and the number of rows is m and the number of 

columns is n. Applying linear interpolation method to 

obtain the approximate surface rcs_a1(f, φ) and applying 

cubic spline interpolation method to obtain the 

approximate surface rcs_a2(f, φ). 

Step 3: For each interval [φsj, φsj+1] (j=1,2,…,n), find 

the “sampling line” at which the ME occurs, say, at φtj, 

such that, 

 1max rcs_a1( , ) rcs_a2( , ) , .   si tj si tj sj tj sj

si

f φ f φ φ φ φ  

Step 4: If a given error tolerance, denoted as CE(φ), 

is larger than the ME in step 3, that means the samples 

obtained are enough; otherwise, adding the “sample 

line” of I (f, φsj) into the sample collection. 

Step 5: For each interval [fsi, fsi+1] (i=1,2,…,m), 

Applying Store-Bulirsch algorithm to obtain the 

“sampling line” at which the ME occurs.  

Step 6: If a given error tolerance, denoted as CE(f), 

is larger than the ME in step 5, that means the samples 

obtained are enough; otherwise, adding the “sample 

line” of I (fsi, φ) into the sample collection. 

Step 7: If each interval [φsj, φsj+1] satisfies the 

condition mentioned in step 4 and each interval [fsi, fsi+1] 

satisfies the condition mentioned in step 6, the whole 

process terminates. 
 

 
 

Fig. 1. Process of two dimensional frequency-angle 

adaptive combined sampling. 

IV. NUMERICAL RESULTS 
In this section, two numerical results are presented 

to demonstrate the efficiency of the proposed two-

dimensional combined adaptive interpolation technique 

(SB-CS) method for fast calculation of wideband 

electromagnetic scattering of precipitation particles.  

In the implementation of the SB-CS method, we use 

GPBi-CG [21] algorithm to solve linear systems arising 

from electromagnetic wave scattering problems. In the 

simulation, θ and φ mean pitch angle and azimuth angle, 

respectively. Both experiments are conducted on an Intel 

Core i7 with 8 GB local memory and run at 3.6 GHz in 

single precision. The iteration process is terminated 

when the 2-norm residual error is reduced to 10-5, and 

the limit of the maximum number of iterations is set  

as 10000. Two examples are applied to illustrate the 

performance of SB-CS method as follows.  

 

Case I. 1000 spherical particles of arbitrary radius 

with random position 

In the first simulation, scattering properties of 1000 

spherical particles under random distribution in the 

space of 0.3*0.3*0.3m3 are researched. Particle parameter 

for simulation in this part is set as follows: the rain group 

is constituted by 1000 homogeneous spheres with random 

diameters range from 0.1 to 4mm, with 35308 unknowns. 

The complex refractive index m varies from 4+0.04i 

to 3.5245+0.08755i, when testing frequency band is 

from 1 GHz to 20 GHz. The direction of incident wave 

is fixed at θ = 0 ,  while φ is from 0  to 180 .  

 

Case II. 500 precipitation particles with random 

position under certain axis ratio distribution [22] 

In actual rainfall, the shape of precipitation particles 

is closely related to the size of water drops. In general, 

raindrop can be seen as sphere when volume is small. 

With increasing of raindrop size, the profile of 

precipitation particle is more close to the ellipsoid shape. 

This relationship has been studied by several researchers, 

and results of relevant research could be found in [22-

24]. In this section, 500 precipitation particles under 

Keenan model [22] in the space of 0.5*0.5*0.5m3 are 

investigated. Particle parameter for simulation in this 

part is set as follows: minor axis of the ellipsoidal 

particles is varied from 0.1 to 4mm. The number of 

unknowns is 27498 and the complex refractive index  

m varies from 4+0.04i to 3.3495+0.105i. The testing 

frequency band is from 8 GHz to 12 GHz. The direction 

of incident wave is fixed at at θ = 0 ,  while φ is from 

0  to 180 .  

Both the directly calculated and the interpolated 

results are presented in Figs. 2-3, while the relative  

error of SB-CS method for two examples has also  

been quantitative evaluated, shown in Fig. 4. These 

examples demonstrate that the SB-CS method is able to 
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approximate the 3-D RCS precisely. As shown in Fig. 2, 

the real curve is obtained by using original SM/CG 

method with the interval of 100 MHz, which needs 

34571 exact calculated sampling points. With the SB-

CS technique, the sampling nodes reduce to 2267. For 

the second example depicted in Fig. 3, the standard 

sampling interval changes to 20 MHz. The total number 

of exact calculated nodes is 36381, when the proposed 

method also needs only 2070 sampling points to obtain 

the approximate simulation curve.  
 

 
 (a) 

 
 (b) 
 

Fig. 2. 3-D RCS of 1000 spherical precipitation particles 

simultaneous versus frequency and angle. (a) SM/CG 

repeated solution, and (b) SB-CS method. 
 

 
 (a) 

 
 (b) 
 

Fig. 3. 3-D RCS of 500 precipitation particles under 

Keenan model simultaneous versus frequency and angle. 

(a) SM/CG repeated solution, and (b) SB-CS method. 

 
 (a) 

 
 (b) 

 

Fig. 4. The relative error of SB-CS method for two 

examples. (a) 1000 spherical precipitation particles, and 

(b) 500 precipitation particles under Keenan model. 

 

Since a good interpolation method depends not  

only on its agreement performance, but also on its 

computational cost, Table 1 compares the number of 

calculated nodes, number of iterations and solution time 

between the traditional SM/CG method and the SB-CS 

method. Compared with the direct SM/CG method, it 

could be seen that the SB-CS method decreases the 

number of calculated nodes by a factor of 15.25 and 

17.58 on both examples. Similar improvements could 

also be found in number of iterations, while solution 

time compression ratio is 14.68 and 17.06 for these two 

examples. AWE method is also applied on these two 

cases, corresponding solution time compression ratio is 

11.25 and 13.93. In this paper, the order of AWE is 6 

and 4, which means numerator is a sixth-order polynomial 

and denominator is a fourth-order polynomial. As the 

sampling points are selected adaptively across the broad 

frequency and angular band of interest, efficiency of  

SB-CS is better than AWE in some extent. Since the 

proposed method can determine the number and the 

location of sampling points automatically, more sampling 

nodes are required when the real curve is complex, as 

the simple curve needs less number of samples. These 

results demonstrate the effectiveness and flexibility of 

SB-CS method applying for wideband electromagnetic 

scattering calculation of precipitation particles in 

frequency-angle domain. 
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Table 1: Comparison of the cost and performance between 

direct SM/CG and SB-CS method 

 

V. CONCLUSIONS AND COMMENTS 
In this paper, a novel two dimensional adaptive 

combined interpolation algorithm based on cubic spline 

technique and the Stoer-Bulirsch model is proposed  

for fast wideband electromagnetic computation of 

precipitation particles in frequency-angle domain. Using 

the proposed method, the frequency-angle domain 

response could be modeled by the adaptive sampling 

strategy to generate new sampling points automatically 

in both frequency and angle domain with quite less 

number of sampling points than traditional direct solvers. 

Compared to traditional AWE technique, this novel 

method needs no matrix inversion and avoids calculating 

derivatives, thus the derived fitting model could be 

applicable in an almost unlimited frequency and angle 

band. Numerical results indicate that this combined 

interpolation strategy performs well in terms of both 

simulation time and computation accuracy. 
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