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Abstract ─ In this paper, a modified flower pollination 

algorithm (FPA) based on the steepest descent method 

(SDM) is proposed to set the optimal initial weights  

and thresholds of the extreme learning machine (ELM) 

for microwave filter design. With the proposed SDM-

FPA, the model trained by the ELM can achieve  

higher accuracy with smaller training datasets for 

electromagnetic modeling, comparing to that achieved 

by traditional artificial neural network. The validity and 

efficiency of this proposed method is confirmed by a 

parametric modeling example of filter design. 

 

Index Terms ─ Extreme learning machine (ELM), filter 

design, flower pollination algorithm (FPA), steepest 

descent method (SDM). 

 

I. INTRODUCTION 
In the design of microwave components or circuits, 

an optimization algorithm is often employed and it usually 

invokes the electromagnetic simulations repeatedly. 

The time-consuming full-wave simulations result in a 

heavy computational burden to complete the design. 

Fortunately, the artificial neural network (ANN) has been 

introduced to learn the relationship between geometrical 

variations and electromagnetic (EM) responses by a 

training process [1-3]. Once the geometrical parameters 

are imported into a trained ANN, it can fast obtain the 

accurate EM responses. An advanced study, which 

combines the neural network and transfer function (TF), 

was developed to model the EM behavior of embedded 

passive components [4]. In [4], the neural network is 

used for mapping the geometrical variations of the 

components onto the TF coefficients without having to 

rely on prior knowledge. 

The most time-consuming part of ANN model 

construction is the collection of training and testing 

samples for model training and testing. How to reduce 

computation time and save more costs of model 

construction is a problem worth studying. 

In the training process, the value of initial weights 

and thresholds is an important factor to determine the 

convergence of ANN. With the optimal initial weights 

and thresholds determined, the initial error is substantially 

smaller and therefore number of training samples that 

come from the time-consuming EM simulations to 

achieve the error criterion is reduced [5]. In general, the 

optimal initial weights and thresholds of ANN can be 

obtained through an optimization process.  

In this paper, an effective ANN model, the extreme 

learning machine (ELM), is presented for filter design. 

By fixing input weights and hidden layer bias of a 

single-hidden layer feed-forward neural network (SLFN), 

ELM transforms the learning of SLFN into a matrix 

calculation, which largely improves the learning speed 

over the traditional feed forward network learning 

algorithms [6]. To further reduce computation time and 

save more training costs, a modified flower pollination 

algorithm (FPA) based on the steepest descent method 

(SDM) is developed to determine the optimal initial 

weights and thresholds of ELM. The SDM-FPA-ELM 

is used to learn the relationship between the geometrical 

variations of filters and the TF coefficients through the 

training process. Compared with the ANN model in [7], 

the proposed ELM can achieve the trained model with 

small training dataset and accurate results due to its 

good iterative learning ability. The validity of this 

proposed model is confirmed with the design of a 

quadruple-mode filter. 
 

II. PROPOSED MODEL 

A. Modified FPA: SDM-FPA 

FPA has powerful global exploration and exploitation 

abilities, and its convergence speed in early period of 

optimization is fast [8]. However, during the late period 

of optimization, its convergence speed becomes slow 

and its accuracy is imprecise. To overcome the weakness 

and improve the optimized performance of FPA, a new 

modified FPA based on the steepest descent method 

(SDM) is developed in this work. 

Let xiter be the positions of flowers in FPA, where 

iter represents the current iteration number. Generally, 

xiter is input into the fitness function directly to evaluate 

the current best value. To improve the local search 

ability of FPA, an SDM circulation is added in FPA. In 
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this circulation, xiter will be the initial value to continue 

searching with the steepest descent direction  iter

jf x  

and steplength .iter

j  
This iterative loop could be presented 

as: 

 
 1 , 0,1, , 1iter iter iter iter

j j j j j M    x x d , (1) 

where  iter iter

j jf d x , and M is the total number of 

SDM iterations. 

After processing the SDM circulation, a new 

position of iter

Mx is obtained. iter

Mx  is input into the 

fitness function to evaluate a value as the current best 

result. Then iter

Mx  is updated to 1

0

iter
x  according to the 

FPA rules [8]. Meanwhile, to keep the results from 

trapping in local optimums, a lot of experiments have 

been done to select the total iteration number M. Finally 

we find that when M is set in the region from 4 to 6, the 

optimization performance is good. If M is less than 4, 

the rate of convergence may not be enhanced. And if M 

is greater than 6, the results are easily trapped in local 

optimums.  

The statistics of optimal objectives for ten test 

functions [9] are tabulated in Table 1, and the best 

results are formatted in bold. It is clear in Table 1 that 

SDM-FPA works well and it is superior to the 

traditional FPA. 

 

Table 1: Statistic of optimal objective values for the test 

functions  

Test Function Method Min Mean 

Sphere 

function 

FPA 7.0241×10-33 8.2901×10-27 

SDM-FPA 4.4521×10-63 4.6425×10-61 

Beale 

function 

FPA 6.4625×10-27 9.6821×10-24 

SDM-FPA 0 0 

Griewank’s 

function 

FPA 6.3672×10-8 6.5645×10-6 

SDM-FPA 7.5485×10-67 6.4654×10-64 

Matyas 

function 

FPA 5.0086×10-42 5.8247×10-28 

SDM-FPA 2.5498×10-68 5.0834×10-53 

Schaffer 

function 

FPA 0 0 

SDM-FPA 0 0 

Rastrigin’s 

function 

FPA 6.5643×10-16 8.7436×10-10 

SDM-FPA 0 2.8594×10-72 

Schwefel 

function 

FPA 1.5549×10-6 1.1032×10-5 

SDM-FPA 1.5516×10-14 1.5543×10-12 

 
B. Proposed ELM: SDM-FPA-ELM 

ELM is a powerful and fast learning algorithm 

based on the modification of the traditional SLFNN 

[10]. It has been proved that the ELM network has 

better accuracy performance than the ANNs and the 

support vector machine [11]. 

Here, the network weights ω between the input  

layer and the hidden layer are defined as: 

 

11 12 13 1

21 22 23 2

1 2 3

n

n

l l l ln l n

   

   

   


 
 
 
 
 
 

ω , (2) 

where l is the number of the hidden neurons and n is  

the number of the input neurons. The network weights 

β between the hidden layer and the output layer are 

defined as: 

 

11 12 13 1

21 22 23 2

1 2 3

m

m

l l l lm l m

   

   

   


 
 
 
 
 
 

β , (3) 

where m is the number of the output neurons. And the 

thresholds b of the hidden layer are defined as: 

 
 1 2 1

, , ,
T

l l
b b b


b . (4) 

At the beginning of the training process, the initial 

values of ω, β and b are set randomly. However, the 

final results of ELM are strongly dependent on the 

initial weights and thresholds, and the bad initial 

weights and thresholds may lead to a slow convergence 

of the optimal value in ELM. To avoid wasting more 

training costs, in this paper, an optimization method is 

proposed to determine the initial weights and thresholds 

based on SDM-FPA. 

There are two processes in SDM-FPA-ELM: the 

optimization of the values of ω, β and b and ELM 

training. The structure of SDM-FPA-ELM is shown in 

Fig. 1. 

 

Optimize the initial weights and 

thresholds of ELM by SDM-FPA

Input Layer Hidden Layer Output Layer

ωij βij 

X1

Xp

Xj

bl 

ELMObtain the optimal values of initial 

weights and thresholds:

SDM-FPA-ELM

 

Fig. 1. Structure of SDM-FPA-ELM. 

 

The fitness function in SDM-FPA is expressed as 

follows: 

 
   ˆ, , min , ,f ω β b = T T ω β b . (5) 

Here, the elements in T are the actual values of the 

real and imaginary parts of S-parameters: 
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11 12 13 1
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T , (6) 

and  ˆ , ,T ω β b , which represents the outputs of the 

ELM network, is defined as: 

 
 

     1 2

ˆ , ,

ˆ ˆ ˆ, , , , , , , , ,

T ω β b

t ω β b t ω β b t ω β bP



  

, (7) 

where 
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, (8) 

where 

 1 2 3 1, , , , , , 1,2,3, ,
T

j j j j n j njX X X X X j P
   X . 

The elements in X are the inputs of ELM, such as the 

operation frequency, geometrical sizes and material 

parameters of microwave passive components. 

When an iteration of SDM-FPA finishes, the 

current best values of ω, β and b are updated and 

substituted into ELM. After the input of X and output of 

T are applied to this ELM, the fitness function could  

be employed to evaluate this series of weights and 

thresholds. 

This process will proceed till the objective 

tolerance of SDM-FPA is satisfied. And the obtained 

optimal values of weights and thresholds will be set as 

the initial ones of ELM, named as ω(0), β(0) and b(0). 

The details of the next training process of ELM 

algorithm are shown in [10]. 
 

C. SDM-FPA-ELM-TF model 

In this paper, the pole-residue-based transfer 

function, an effective TF form used in EM simulations, 

is chosen for our proposed model. The transfer function 

is presented as follows 

 

 
1

N
i

i i

r
H s

s p




 , (9) 

where pi and ri represent the poles and residues of the 

transfer function, respectively, and N is the function 

order [7]. 

The whole process of the SDM-FPA-ELM-TF 

model in Fig. 2 is as follows: 

1) Collect the training and testing data with full-wave 

EM simulations. 

2) Use SDM-FPA to optimize ω, β and b, and set the 

initial values of weights and thresholds of ELM, 

named as ω(0), β(0) and b(0), with the optimal 

values. 

3) Build the SDM-FPA-ELM-TF model for a passive 

component. The transfer function is used to represent 

the EM responses versus frequency. SDM-FPA-

ELM is used to learn the relationship between the 

geometrical variations of the component and the 

coefficients of transfer functions through the 

training process. 

4) Train the SDM-FPA-ELM-TF model with collected 

training data to find the optimal values of weights 

and thresholds of ELM. 

5) Test the SDM-FPA-ELM-TF model with collected 

testing data. 
 

     0 0 0
, ,ω β b

Optimized initial weights 

and thresholds

Optimization of the values of  

Coefficients of transfer 

functions

x L S W h … 

Full-wave EM 

simulation

Frequency

S-parameter T

ELM(           )

Pole-residue-based transfer 

function

 ˆ , ,T ω β b

Training error ETr(           )of the 

overall model

, ,ω β b

ELM Training

Geometrical 

variables

, ,ω β b

, ,ω β b

 ˆ , ,T T ω β b

SDM-FPA

S-parameter T

ELM
, ,ω β b

 ˆ , ,T ω β b

 

Fig. 2. SDM-FPA-ELM-TF model. 
 

III. APPLICATION EXAMPLES 
In this section, a quadruple-mode filter is used as 

an application example to evaluate the proposed SDM-

FPA-ELM model. The HFSS 15.0 software performs the 

full-wave EM simulation and generates the training and 

testing data for modeling. The design of experiments 

(DOE) method is used for sampling [12]. All calculations 

in this paper are performed on an Intel i7-4870 2.50 GHz 

machine with 16 GB RAM. 
 

Port1

a
b S

S

S

S Port2

Coupling 

probe

Metal 

cylinder
h

d

Metal 

cylindrical

Coaxial feed

 
 (a) (b) 
 

Fig. 3. Structure of the quadruple-mode filter. (a) Top 

view. (b) Three dimensional view. 
 

The structure of a quadruple-mode filter is illustrated 

in Fig. 3, where the height and diameter of the cavity 

are d and a, the height and diameter of the two 

perturbation metal cylinders of the intra-cavity are h 

and b, and the distance between the two metal cylinders 

is 2 2S  [13]. The model has five input geometrical 

variations, i.e., x = [a b S h d]T. Frequency is an 

additional input parameter with an original range of 1-5 
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GHz. The model has two outputs, i.e., y = [RS11 IS11]T, 

where RS11 is the real part of S11 and IS11 is the image 

part of S11.  
 

Table 2: Definition of training and testing data for the 

quadruple-mode filter 

Geometrical 

Variations 

Training Data 

(49 Samples) 

Testing Data 

(25 Samples) 

 Min Max Step Min Max Step 

a (mm) 44 56 2 45 53 2 

b (mm) 12 18 1 12.5 16.5 1 

S (mm) 2 8 1 2.5 6.5 1 

h (mm) 14 20 1 14.5 18.5 1 

d (mm) 44 56 2 45 53 2 
 

The DOE method with seven levels defines the 

training samples, i.e., a total of 49 training samples, and 

DOE with five levels defines the testing data, i.e., a 

total of 25 testing samples. The information of training 

data and testing data is shown in Table 2. The total CPU 

time for training-data generation from EM simulations 

is about 1.225 hours, and the total time for testing-data 

generation is about 0.625 hours. After the modeling 

process, the average training percentage error is 0.385%, 

while the average testing percentage error is 0.587%. 
 

Table 3: Comparison between the reference model and 

proposed model for the quadruple-mode filter  

49 Training Samples and 

25 Testing Samples 

Average 

Training 

Error 

Average 

Testing 

Error 

Reference model in [7] 2.904% 4.862% 

Proposed model 0.385% 0.587% 

81 Training Samples and 

49 Testing Samples 

Average 

Training 

Error 

Average 

Testing 

Error 

Reference model in [7] 1.431% 1.509% 

Proposed model 0.407% 0.598% 
 

The model in [6] is employed for comparison here. 

The DOE methods with nine levels (81 samples) and 

seven levels (49 samples) are respectively used for 

training and testing in the reference model. The total 

time for training-data generation from EM simulations 

is about 2 hours, and the total time for testing-data 

generation is about 1.225 hours. With 49 training 

samples, as shown in Table 3, the proposed model 

achieves the acceptable accuracy, but the desired 

accuracy cannot be obtained with the reference model. 

When the number of training sample rises to 81, the 

accuracy of reference model is enhanced. It is observed 

that fewer training samples are needed for the proposed 

model to obtain an accurate trained model. It means that, 

to achieve the same accuracy, considerable simulation 

time could be saved with the proposed model for 

sample collection, as illustrated in Table 4. 

Table 4: Running time of the two models for the 

quadruple-mode filter 

 CPU Time of Model Development 

 Reference Model in [7] Proposed Model 

Training 

process 

4 hours 

(81 samples) 

2.45 hours 

(49 samples) 

Testing 

process 

2.45 hours 

(49 samples) 

1.25 hours 

(25 samples) 

Total 6.45 hours 3.7 hours 

 
Figure 4 shows the outputs of two different test 

geometrical samples of the quadruple-mode filter with 

the proposed model, comparison model and HFSS 

simulation. The geometrical variables for the two 

samples in the range of the training data are x1 = [45.6 

15.6 7.2 17.1 48.1]T and x2 = [52.3 11.8 6.3 19.4 45.8]T. 

It is observed that the proposed model can achieve good 

accuracy for different geometrical samples even though 

these samples are never used in training. 

Meanwhile, two other test geometrical samples, 

which are selected out of the range of the training  

data, are chosen to evaluate the proposed model. The 

geometrical variations for the two samples are 
'

1x  = [40 

10 0 12 40]T and 
'

2x  = [40 9 10 22 60]T. From Fig. 5, it 

is observed that our model can achieve good accuracy 

for different geometrical samples even though these 

samples are out of the range of the training data. 
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Fig. 4. Comparison of S11: (a) Sample 1 and (b) Sample 

2, where the samples are in the range of training data. 

ACES JOURNAL, Vol. 33, No. 3, March 2018282



1 2 3 4 5

-40

-30

-20

-10

0

 

 

|S
1

1
| (

d
B

)

Frequency (GHz)

 HFSS simulation

 Comparison model

 Proposed model

 
 (a) 

1 2 3 4 5
-70

-60

-50

-40

-30

-20

-10

0

 

 

|S
1

1
| (

d
B

)

Frequency (GHz)

 HFSS simulation

 Comparison model

 Proposed model

 
 (b) 

 

Fig. 5. Comparison of S11: (a) Sample 1 and (b) Sample 

2, where the samples are out of the range of training 

data. 
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Fig. 6. Optimization results of S11 from the proposed 

model: (a) Filter 1 and (b) Filter 2. 

Once the proposed model training is completed,  

the trained model which is a substitute for the time-

consuming EM simulation can be applied to the design 

optimization. As an example of filter design, two 

separate filters are optimized to reach two different 

design specifications. The optimization objectives and 

results are shown in Fig. 6. The initial values are x = 

[50 15 4 17 50]T. The optimization with SDM-FPA of 

the quadruple-mode filter is performed by calling the 

trained model repeatedly. The optimized geometrical 

values for the two separate filters are: xopt1 = [50.0234 

14.4081 7.4103 14.8103 44.9081]T and xopt2 = [49.9802 

13.9841 7.2004 14.7903 45.3094]T. 

The optimization spends only about 30 seconds to 

achieve the optimal solution for each filter, shown in 

Table 5. The proposed model could save considerable 

time in optimization design compared with the calling 

of EM simulations. 
 

Table 5: Running time of the direct EM optimization 

and the proposed model 

 

CPU Time of Model Development 

Direct EM 

Optimization 

SDM-FPA-ELM-TF 

Model 

Filter 1 10 hours 30 s 

Filter 2 11 hours 30 s 

Total 21 hours 3.7 hours (training)+60 s 

 

IV. CONCLUSION 
In this paper, an efficient ELM model based on a 

modified SDM-FPA is proposed to enhance the learning 

effectiveness in EM simulations. SDM-FPA is developed 

to set the optimal initial weights and thresholds of ELM 

and it saves more training costs. In this method, SDM-

FPA-ELM is used to learn the relationship between  

the geometrical variations of filters and the coefficients 

of transfer functions through the training process. 

Compared with the reference model, the proposed 

model can achieve the trained model with small training 

samples due to its good iteration learning ability. A 

quadruple-mode filter is employed as a parametric 

modeling example to confirm its validity. The proposed 

model provides its powerful computing ability, especially 

in the field of EM optimization design. 
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