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Abstract ─ In this paper, the approximate calculations 

of the half-power beam width (HPBW) of a uniform 

circular array (UCA) in azimuth and elevation are 

investigated by numerical calculations and data analysis 

methodology. Two corresponding formulas are proposed 

to approximately estimate the HPBW of UCA in azimuth 

and elevation under different pointing directions of the 

main lobe. The proposed formulas’ validities are examined 

by comparing the results with the ones directly calculated 

from the array factor. Besides, the accuracies of the 

proposed approximate formulas are evaluated in both 

absolute error and error rate. The calculation speed is 

assessed in time as well. Numerical simulation results are 

provided to show the proposed formulas’ performances. 

Index Terms ─ Approximate calculation, estimation 

formulas, half-power beam width (HPBW), uniform 

circular array (UCA). 

I. INTRODUCTION
Uniform circular arrays (UCAs), also known as 

uniform ring array, have some special characteristics 

compared with uniform linear arrays (ULAs) and uniform 

planar arrays (URAs). It can be known from the antenna 

theory that UCAs can provide a 2-dimension (2D) angular 

scan, namely angular scan in azimuth and elevation. 

Moreover, UCAs can scan in azimuth plane from 0° to 

360° almost without distortion for the radiation pattern, 

since the mutual coupling effect is the same for each 

element. The applications of UCAs hence can be found 

in many fields, such as source localization [1], the 

direction of arrival (DoA) estimation [2], wireless 

communications [3], smart antennas [4], and so on. 

Lots of studies have been reported on UCAs. The 

authors in [5] investigate the DoA estimation via moving 

a UCA in predefined path under multipath environments. 

2D DoA estimations are studied for UCAs [6-8]. The 

phase-mode-decomposition-based and optimization-based 

methods are investigated to suppress the side lobe of 

UCA [9]. The effect of mutual coupling is studied for 

UCA from the electromagnetic aspect [10]. Only a few 

of researches pay attention to the fast calculation of 

UCA’s HPBW which is very complicated to compute 

from the definition. Though the calculation of HPBW for 

UCA is investigated in [11], it is only available for the 

main lobe pointing at the azimuth plane and still very 

complicated. A simple formula with only two parameters, 

wavelength and array radius, is proposed to estimate 

the HPBW of UCA roughly [12, 13], yet it is only 

applicable under the zenith angle of main beam being 

90°.  

It is necessary to figure out an easy and quick 

solution on calculating the HPBW of UCA, because fast 

HPBW estimation is an important and meaningful job in 

the pre-design of UCA. For example, before designing 

an UCA for 2D DoA estimation application, the HPBW 

of the UCA’s main lobe needs a quick and rough 

evaluation. Estimating the HPBW of UCA is an energy-

consuming and time-consuming task due to no formula 

with a simple form like that of the one for ULA [14]. 

Accordingly, the study of this paper focuses on 

finding out a simple method to estimate the HPBW for 

UCA. Based on numerical computation and data analysis, 

a formula is proposed to approximately calculate the 

azimuth HPBW for UCA under different zenith angles 

of the main lobe. Compared to the formula in [12, 13] 

which only can calculate the azimuth HPBW under 

the zenith angle of 90°, the proposed formula is more 

applicable. Considering the situation that the two main 

beams, which are symmetric about the azimuth plane 

(xy-plane in Fig. 1), of the UCA can be identified 

definitely, a formula with simple form is also proposed 

to estimate the elevation HPBW roughly. The proposed 

formulas not only can estimate the HPBW of UCA 

correctly, but also achieve the good calculation accuracy, 

especially for azimuth HPBW. More importantly, the 

proposed formulas far surpass the definition method in 

calculation speed. 

The remainder of this paper is organized as follows. 

Section II describes the general geometry of UCA. The 

approximate estimations of HPBWs in azimuth and 

elevation are investigated in Section III where two 

corresponding estimation formulas are also proposed. 

The proposed formulas’ performances in validity, 
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accuracy and speed are studied via numerical simulations 

in Section IV. Finally, conclusions are drawn in Section 

V. 

 (a) (b) 

Fig. 1. (a) Configuration of UCA with N-element, and 

(b) definition of HPBW in azimuth and elevation.

II. GEOMETRY OF UCA
A configuration of UCA with N elements located in 

xy-plane is illustrated in Fig. 1 (a) [15]. The array radius 

is a, and the nth element is located at the phase angle of 

𝜑𝑛 where n=1, 2, …, N. Each element has an associated

weight 𝐼𝑛 and phase 𝛼𝑛, meaning the amplitude and

phase of excitation current. The array factor (AF) can be 

written as [14, 15]: 

 𝐴𝐹(𝜑, 𝜗) = ∑ 𝐼𝑛𝑒𝑗(𝑘𝑎 sin(𝜗) cos(𝜑−𝜑𝑛)+𝛼𝑛)𝑁
𝑛=1 ,

(1) 
𝛼𝑛 = −𝑘𝑎 sin(𝜗0) cos(𝜑0 − 𝜑𝑛),

where 𝑘, 𝜑, 𝜗 are the wavenumber, azimuth angle, zenith 

angle, respectively, 𝜑𝑛 is the angular location in azimuth

plane and given by: 

𝜑𝑛 = 2𝜋
𝑛−1

𝑁
. (2)

The element spacing of the UCA can be obtained as: 

𝑑 =
2𝜋

𝑁
𝑎. (3) 

Letting 𝑑 = 𝜆/2 and substituting it into (3), we have: 
𝑎

𝜆
=

𝑁

4𝜋
. (4) 

The left term of (4) is usually named electrical 

length. Equation (4) reveals the proportional relationship 

between the electrical length of array radius and the 

number of array elements. 

III. ANALYSIS OF THE APPROXIMATE

CALCULATION OF HPBW 
In order to define the HPBW for UCA clearly, the 

HPBWs in azimuth and elevation, 𝛷𝜗0
 and 𝛩𝜗0

, are used

to describe the HPBW of UCA under the zenith angle of 

𝜗0, illustrated in Fig. 1 (b). Letting 𝜑 = 𝜑0 and 𝜗 = 𝜗0

in the AF in (1), we have: 

𝐴𝐹(𝜑) = ∑ 𝐼𝑛𝑒𝑗(𝑘𝑎 sin(𝜗0) cos(𝜑−𝜑𝑛)+𝛼𝑛)𝑁
𝑛=1 , 

(5) 
𝛼𝑛 = −𝑘𝑎 sin(𝜗0) cos(𝜑0 − 𝜑𝑛),

and 

𝐴𝐹(𝜗) = ∑ 𝐼𝑛𝑒𝑗(𝑘𝑎 sin(𝜗) cos(𝜑0−𝜑𝑛)+𝛼𝑛)𝑁
𝑛=1 , 

(6) 
𝛼𝑛 = −𝑘𝑎 sin(𝜗0) cos(𝜑0 − 𝜑𝑛).

In order to attain the common results, we assume 

that the isotropic radiators are employed as the elements 

of the UCA in this paper. Considering a UCA model with 

uniform excitation amplitude, 𝐼𝑛 in (5) and (6) can be set

to 1, and the HPBWs in azimuth and elevation can be 

directly computed via (5) and (6) respectively at the half-

power points. Although computing the HPBWs from (5) 

and (6) is the most accurate approach, it is obviously a 

tough job.  

The azimuth HPBW of UCA under 𝑑 = 𝜆/2 can be 

approximately calculated by [12, 13]: 

𝛷 ≈ 21∘ ∙
𝜆

𝑎
. (7) 

However, (7) only can be used to calculate the 

azimuth HPBW under 𝜗 = 90°, namely (7) is not 

available under 𝜗 ≠ 90°. It is also demonstrated in Table 

1. 

Table 1: Azimuth HPBW under different 𝜗0

𝝑𝟎 (deg.) 𝜱𝝑𝟎
 (deg.) 𝜱𝝑𝟎

𝜱𝟗𝟎⁄

10 49.948 5.803 

20 25.210 2.929 

30 17.226 2.001 

40 13.394 1.556 

50 11.237 1.306 

60 9.939 1.155 

70 9.160 1.064 

80 8.740 1.015 

90 8.607 1.000 

Fig. 2. Trend of 𝛷𝜗0
 normalized by 𝛷90.

According to (5), we can find that both components 

of the main lobe direction, azimuth angle and zenith 

angle, are contained in the AF besides the electrical 

length of array radius. It implies that the azimuth HPBW 

should be affected by the direction of the main lobe. 

According to the knowledge of array antenna, it is known 

that the azimuth HPBW remains unchanging with the 

azimuth angle of the main lobe. It suggests that the 

azimuth HPBW must have a relationship with the zenith 

angle. Based on (5), it is easy and reasonable to deduce 

that 𝛷𝜗0
 has a relationship with the sine or cosine of the
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zenith angle. To further investigate the relationship, the 

azimuth HPBWs of UCA are directly calculated from (5) 

under different values of 𝜗0, and recorded in Table 1. 

In Table 1, the zenith angles and the corresponding 

azimuth HPBWs, namely 𝜗0 and 𝛷𝜗0
, are depicted on the 

first and second columns in degree respectively, and the 

ratios of the azimuth HPBWs corresponding to different 

𝜗0 to azimuth HPBW under 𝜗0 = 90°, i.e., 𝛷90, are 

presented on the third column. The data on the second 

and third columns indicate that the azimuth HPBW 

decreases with the increasing of 𝜗0 until 𝜗0 = 90°. In 

addition, the results of 𝛷𝜗0
𝛷90⁄  show a minimum ratio 

of 1 at 𝜗0 = 90°. It is easy to know that the property is 

coincident with that of 1 sin(𝜗0)⁄ . To observe the trend 

of the data clearly, the ratio of 𝛷𝜗0
𝛷90⁄  and 1/ sin(𝜗0) 

are plotted in Fig. 2. It can be seen that the curve of 

𝛷𝜗0
𝛷90⁄  highly agrees with that of 1/ sin(𝜗0).  

Therefore, the azimuth HPBW of UCA can be 

summarized as: 

 𝛷𝜗0
≈ 𝛷90 ×

1

sin(𝜗0)
, (8) 

where 𝛷90 is the HPBW under 𝜗0 = 90° and given by 

(7). Substituting (7) into (8), an estimation formula for 

the azimuth HPBW of a UCA can be obtained as: 

 𝛷𝜗0
≈ 21∘ ∙

𝜆

𝑎 sin(𝜗0)
, (9) 

where 𝜗0 ∈ (0°, 180°). Note that the absolute value of 

𝛷𝜗0
 in (9) is approaching to infinity when 𝜗0 is closing 

to 0° and 180°. This apparently do not happen in reality. 

Under such situation, it is meaningless to consider the 

azimuth HPBW. Consequently, to avoid the two singular 

points and ensure the validity of (9), the value of 𝜗0 is 

limited in (10°, 170°).  

According to the antenna theory, the variation of 

elevation HPBW is too complicated to be described by a 

simple function for 𝜗0 ∈ (0°, 180°), since the array has 

two symmetric main beams with respect to the plane  

the array located in and the beams cannot be definitely 

separated when the element number is too small or the 

value of 𝜗0 is close to 90°. To estimate the elevation 

HPBW in a simple way, we only consider the situation 

that the two main beams of a UCA can be separated 

definitely. Thus, only 𝜗0 ∈ (10°, 70°) ∪ (110°, 170°) 

are considered in the elevation HPBW’s investigation in 

this paper. 

Similarly, the elevation HPBWs under different 

values of 𝜗0 are computed via (6), as recorded in Table 

2. The data on the second and third columns show that 

with the growing of 𝜗0, the elevation HPBWs, 𝛩𝜗0
, 

increase gradually, as well as the normalized 𝛩𝜗0
. 

According to the AF in (6), the elevation HPBW must 

have a connection with the sine or cosine of 𝜗0. It is 

easily to deduce that the elevation HPBW is related to 

1/ cos( 𝜗0). To observe the variations more clearly, the 

normalized 𝛩𝜗0
 and 1/ cos( 𝜗0) are plotted in Fig. 3.  

Table 2: Elevation HPBW under different of 𝜗0 

𝝑𝟎 (deg.) 𝜣𝝑𝟎
 (deg.) Normalized 𝜣𝝑𝟎

 

10 2.622 0.341 

20 2.748 0.358 

30 2.982 0.388 

40 3.371 0.439 

50 4.021 0.523 

60 5.181 0.674 

70 7.685 1.000 
 

 
 

Fig. 3. Trend of the normalized 𝛩𝜗0
. 

 

Based on the results in Table 2 and Fig. 3, the 

approximate formula for estimating the elevation HPBW 

of a UCA can be summarized as below: 

 𝛩𝜗0
≈ 21∘ ∙

𝜆

𝑎 cos(𝜗0)
, (10) 

where 𝜗0 ∈ (10°, 70°) and 𝜗0 ∈ (110°, 170°).  

The proposed formulas, (9) and (10), depict the 

simple relations that the azimuth HPBW of UCA is 

inversely proportional to the sine of zenith angle of the 

main lobe and the electrical length of array radius, and 

the elevation HPBW is inversely proportional to the 

cosine of zenith angle of the main lobe and the electrical 

length of array radius. The overall computational costs 

of (5) and (6) are given by 𝑂(𝑁), while those of the 

proposed approximate formulas only require 𝑂(1). 

Apparently, the computational complexities of (5) and 

(6) that increase with the growing of n are higher than 

those of the proposed approximate formulas, especially 

for a large UCA.  
 

IV. RESULTS 
In this section, the validities and accuracies of the 

proposed formulas are studied in numerical simulations 

as well as the calculation speed in time. Since the results 

validities and accuracies are symmetric about 𝜗0 = 90°, 

for the sake of brevity, only those for 𝜗0 ≤ 90° are 

provided in this paper. 
 

A. Validity verification 

According to proposed formulas, the HPBW of the 
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UCA in azimuth and elevation are only affected by 𝜆 𝑎⁄  

and 𝜗0. To examine the validities, the results of the

HPBW obtained from (9) and (10) are compared with 

those computed via the AF in (5) and (6) under different 

values of 𝜆 𝑎⁄  and 𝜗0 respectively. As aforementioned,

the study of paper focuses on the uniform tapering case. 

Accordingly, we can set 𝐼𝑛 = 1 in (5) and (6).

The verification of (9) under different values of 𝜗0

is provided in Fig. 4 where the curves labeled “via (5)” 

and “via (9)” represent the results obtained by (5) and (9) 

respectively. Two array radii examples, 𝑎 = 3.18𝜆 and 

𝑎 = 4.77𝜆, are presented in this simulation. It can be 

seen that the results obtained from the proposed formula 

(9) are highly in agreement with those computed by the

AF in (5) under different zenith angles. It suggests that

the proposed approximate formula (9) can not only get

correct results, but also be applicable under different

zenith angles of the main lobe for UCA. In addition, it

also suggests that the proposed approximate formula is

suitable for different array radii.

Fig. 4. Azimuth HPBWs under different zenith angles. 

Fig. 5. Elevation HPBWs under different zenith angles. 

The elevation HPBWs under different zenith angles 

for 𝑎 = 3.18𝜆 and 𝑎 = 4.77𝜆 are presented in Fig. 5. It 

can be seen that the results computed from (10) agree 

with the ones calculated by (6) well, especially for 𝑎 =
4.77𝜆. The results also indicate that (10) can obtain a 

correct elevation HPBW with an acceptable error, if the 

two main beams of a UCA can be definitely identified. 

Besides, the proposed estimation formula (10) is not only 

suitable for different zenith angles of the main lobe, but 

also applicable under different array radii. 

Therefore, the proposed approximate formulas, (9) 

and (10), can be used to estimate the HPBWs of UCA in 

azimuth and elevation under different array radii and 

zenith angles of the main lobe.  

B. Calculation error

Since the proposed formulas attain approximate

results, the calculation error is a very important 

characteristic, which directly affects the accuracy of 

the results and leads to a limitation for the formulas’ 

application. Consequently, the accuracies of the proposed 

formulas should be evaluated.  

To investigate the accuracy of the proposed 

approximate formula (9), taking the results computed by 

(5) as a reference, the azimuth HPBWs of UCA are

calculated by (9) under different zenith angles and array

radii. The comparisons are presented in both absolute

error and error rate, as depicted in Fig. 6 and Fig. 7.

It is clear from the results in Fig. 6 that the 

differences between the results calculated by (5) and (9) 

are very small. The absolute errors decrease with the 

growing of 𝜗0, and reach the minimums at 𝜗0 = 90°.

Besides, the errors decline with the growing of array 

radii in general, though the decreased calculation errors 

are smaller and smaller with the array radius growing. 

Moreover, the trends of the calculation errors for 

different array radii are almost the same, which implies 

the good agreements of the calculation errors under 

different array radii.  

Figure 7 shows the contrary trends that the maximum 

error rates occur at  𝜗0 = 90°, and the error rates grow

as 𝜗0 increases till 90°. The results also show that the

maximum calculation rror rates under different radii are 

almost the same, and their upper limits are around 2.2% 

at 𝜗 = 90°. In addition, as the array radius grows, the 

error rates decline slower and slower and tend to stay 

steady at the maximums when 𝜗0 is approaching to 90°.

It means that the growing of array radius weakens the 

influence of the elevation component of the main lobe’s 

direction to the calculation error rate. Both absolute error 

and error rate in Fig. 6 and Fig. 7 reflect that the proposed 

approximate formula (9) gets a good accuracy.  

The accuracy of the proposed estimation formula 

(10) for the elevation HPBW is also evaluated in absolute

error and error rate, as depicted in Fig. 8 and Fig. 9. It

can be seen from Fig. 8 that the calculation errors are

very small, except for the case of 𝑎 = 3.18𝜆 under 𝜗0 >
65°. The calculation errors gradually increase as 𝜗0 is

approaching to 90°, especially for the small array radius
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cases, since it is harder and harder to distinguish the  

two main beams of the UCA. Generally, the calculation 

errors remain unchanging till 𝜗0 = 50°, and then begin 

to decline and bound. The results indicate that with the 

increasing of array radii, the calculation errors decrease 

and the values of 𝜗0 at bounding points increase.  
 

 
 

Fig. 6. Absolute error of (9). 
 

 
 

Fig. 7. Error rate of (9). 
 

 
 

Fig. 8. Absolute error of (10). 
 

The simulation results in Fig. 9 show that the error 

rates begin with around 2.2%, and with the growing of 

𝜗0, they decrease gradually. The error rates bound at a 

certain 𝜗0 which grows as the array radius increases. The 

reason of the error rates grows quickly when 𝜗0 > 65° 

for the case of 𝑎 = 3.18𝜆 is mentioned before. In general, 

the larger the array radius is, the steadier the error rates 

are. Meanwhile, the general trends of error rate are 

coincident with those of the absolute errors in Fig. 8.  
 

 
 

Fig. 9. Error rate of (10). 
 

C. Calculation speed 

To further show the proposed formulas’ advantage, 

the computational speeds are evaluated based on the 

calculation time. Due to the same calculation speed of 

(5) and (6) and the same calculation speed of (9) and 

(10), for the sake of brevity, only the calculation times of 

(5) and (9) are presented. The results based on 10,000 

iterations are depicted in Fig. 10. It shows that the 

calculation time of (9) remains constant even if N 

increases, yet the computational time of (5) grows with 

the increasing of N. Moreover, the calculation time of (9) 

is at least 2,000 times less than that of (5) in this example, 

and this ratio grows with the increasing of N. It implies 

that the proposed formulas can approximately estimate 

the HPBW of a UCA at a very high speed, compared 

with the involuted and time-consuming conventional 

method, i.e., by (5) and (6). 
 

 
 

Fig. 10. Calculation times based on 10,000 iterations. 
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V. CONCLUSION
In this paper, two very simple formulas are proposed 

to estimate the HPBW of UCA in azimuth and elevation 

roughly under different main lobe directions. In contrast 

with computing the HPBW directly from definition, the 

proposed approximate formulas provide an easy and fast 

approach to estimate the HPBW of UCA in azimuth and 

elevation. The proposed formula for azimuth HPBW can 

get not only a correct result but also a good accuracy with 

a maximum error rate of 2.2%. The formula for elevation 

HPBW also can estimate the elevation HPBW correctly 

with an acceptable accuracy. Moreover, the proposed 

formulas attain an extremely high calculation speed. 

Therefore, the study in this paper provides a simple and 

quick method to estimate the HPBW of UCA.  
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