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Abstract – Compared with the traditional actuator, the
fluid momentum controller actuator based on magneto-
hydrodynamics (MHD) has some unique advantages and
characteristics. In this paper, a method is proposed for
the shape optimization of fluid momentum ring cross
section. Based on the engineering situation, this arti-
cle proposes a mathematical model of angular momen-
tum that can be used for analytical calculations. Second,
the two shapes obtained are unified and mathematically
expressed in terms of maximum power and minimum
resistance, respectively. Finally, the particle swarm algo-
rithm is used to optimize the parameters of the proposed
shape in combination with finite element method (FEM).
Compared with the common rectangular section scheme,
the attitude adjustment performance of fluid momentum
ring can be effectively improved. Specifically, for the
same area of cross section, the fluid momentum rings
with the proposed shape provide the angular momen-
tum values that exceed those of the rectangular shape by
14%-17% for the cases considered. This method avoids
the huge computation of computational fluid dynamics
and multidisciplinary topology optimization.

Keywords – shape optimization, cross section, magneto-
hydrodynamics (MHD), satellite attitude.

I. INTRODUCTION
Attitude control of satellites is an important part of

performing space missions. There are several implemen-
tations of satellite attitude control, among which the fluid
momentum ring possesses some unique advantages. The
magnetohydrodynamics (MHD) based fluid momentum
ring without bearings and moving rigid bodies has good
research prospects. In 1988, NASA proposed a patent
[1], explaining the concept and functioning of the flu-
idic momentum controller (FMC). This paper discusses
the MHD-based fluid momentum ring, driven by electro-
magnetic forces. The related study involves the problem
of coupled electromagnetic fluid multi-physical fields,

and the related calculations are more complicated. There
have been many studies [2–6] on fluid momentum rings
based on MHD in the past decades. The fluid momentum
ring adjusts the attitude of the satellite following the con-
servation of angular momentum, as shown in Figure 1.
The fluid in the fluid cavity is subjected to an electro-
magnetic torque that changes the flow velocity, while the
satellite body is subjected to a reaction torque. Different
fractional models are estimated of unsteady MHD flow
by Talha Anwar, and the solutions of velocity and energy
are reached by a series of algorithms [7–11].

In the existing studies, the pipe cross section is cir-
cular or rectangular. Through analysis and compari-
son, the rectangular section is conducive to maximize
electromagnetic force, while the circular section is con-
ducive to minimize hydraulic resistance. In 2007 [12],
MHD transient flows in rectangular cross-sectional chan-
nel is analyzed. Different cross-sectional aspect ratios of
rectangular shape are discussed [13]. For satellite atti-
tude actuators, efficiency and weight are sensitive, and
the rectangular cross section is clearly not the optimal
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Fig.1. Conservation of angular momentum between the 
fluid ring and the satellite. 

In the existing studies, the pipe crosssection is 
circular or rectangular. Through analysis and 
comparison, the rectangular section is conducive to 

Fig. 1. Conservation of angular momentum between the
fluid ring and the satellite.
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solution. The shape optimization of the momentum ring
cross section based MHD represents a challenging com-
putational problem because optimization program needs
to call MHD multiple physical field solutions includ-
ing computational fluid dynamics (CFD) for many times,
which brings a huge amount of computation. In addition,
common shape optimization treatments need to deal with
the problem of boundary interpolation and the transition
problem of different boundary conditions.

Based on the optimization theory and the study of
FMC based on MHD, this paper presents a unified equa-
tion for circles and rectangles to describe the shape of
pipe interface. At the same time, a simplified MHD ana-
lytical model suitable for a fluid momentum ring is pro-
posed. These works make the pipe section shape and
the input electromagnetic field parameterized and estab-
lish a relationship with the angular momentum of a fluid
momentum ring, an important satellite attitude adjust-
ment parameter. Finally, an effective and fast framework
for the shape optimization design of the fluid momentum
rings is proposed. This method enables the implemen-
tation of the shape optimization of the cross section of
the FMC based on MHD, allowing the actuator’s attitude
adjustment performance to be improved.

II. PHYSICAL MODEL
A. Satellite control principle

The attitude control principle of FMC based on
MHD is the same as that of the flywheel. When the
satellite is in space, it will inevitably be subjected to the
torque of external disturbance Td , which will produce an
angular velocity ωs. Suppose the angular momentum of
the fluid in FMC is H f and the angular momentum of
the satellite (excluding the fluid ring) is Hs. It can be
expressed as the following formulas:

Td =
dHs

dt
+

dH f

dt
+ωs×Hs, (1)

Considering only the single-axis problem here, we
have

ωs×Hs ≈ 0, (2)

H f
∂ j
∂ t

= 0, (3)

where j is the unit vector, and H f = H f j.
If you require the satellite stable attitude, that is,

after the above integral there

H f = H f 0 +
∫ t

0
Tddt, (4)

where H f 0 is the initial angular momentum of the
fluid ring. Thus, the maximum angular momentum
of a fluid ring indicates its ability to absorb external
torques.

According to the theory of electromagnetism, the
current perpendicular to the magnetic field will be
affected by the Lorenzo force, and FMC based on MHD
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current perpendicular to the magnetic field will be 
affected by the Lorenzo force, and FMC based on MHD 
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product of flux density B and current density J  
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element: 

 
e ( ) .dF J B dV= ×  (6) 

In this work, the electromagnetic drive structure is 
shown in Figure2. The magnetic field is generated by 
permanent magnets (PMs), the power supply is 
controlled by current, and the electric and magnetic 
fields are perpendicular to each other. 

 

 

 
Fig.2. Schematic diagram of electromagnetic drive. 
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where ρ is the density of the fluid, U is the velocity 
vector, eF  is the electromagnetic force, µ  is the 
kinematic viscosity of fluid material, and P is the inner 
pressure. The cross section of the pipe is uniform and 
the shape deformation is not considered. The 
mechanical equations are established using the 
mechanical equilibrium of the fluid at steady state. The 
following principal assumptions are considered:  

(1)The external magnetic field is a uniform static 
field, and the induced magnetic field is neglected.  

(2)The electrodes are excellent conductors, and the 
single electrode is equipotential. 

(3)The flow is unidirectional and one-dimensional. 
According to engineering fluid dynamics, the 
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where S  is the area of the crosssection of the pipe, and 
fh  reflects the pressure loss when flowing along a pipe 
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Fig. 2. Schematic diagram of electromagnetic drive.

is driven based on this basic principle. The vector prod-
uct of flux density B and current density J determines the
force acting on the liquid metal volume element:

dFe = (J×B)dV. (5)
In this work, the electromagnetic drive structure is

shown in Figure 2. The magnetic field is generated
by permanent magnets (PMs), the power supply is con-
trolled by current, and the electric and magnetic fields
are perpendicular to each other.

For a steady flow body, there is
ρ(U ·∇U) =−∇P+Fe +µ∇

2U, (6)
where ρ is the density of the fluid, U is the velocity vec-
tor, Fe is the electromagnetic force, µ is the kinematic
viscosity of fluid material, and P is the inner pressure.
The cross section of the pipe is uniform and the shape
deformation is not considered. The mechanical equa-
tions are established using the mechanical equilibrium of
the fluid at steady state. The following principal assump-
tions are considered:

(1) The external magnetic field is a uniform static field,
and the induced magnetic field is neglected.

(2) The electrodes are excellent conductors, and the
single electrode is equipotential.

(3) The flow is unidirectional and one-dimensional.

According to engineering fluid dynamics, the fric-
tion loss in a continuous pipe is followed

Ff = h f S, (7)
where S is the area of the cross section of the pipe, and
h f reflects the pressure loss when flowing along a pipe
with equal cross section

h f = f
l
d

ρU2

2
, (8)

f =
64
Re

. (9)

In eqn (8), d is the hydraulic diameter of the liquid
in the pipe, f is the coefficient of friction, and l is the
length of the flow. Calculations confirm that the actual
flow state is laminar. In eqn (9), Re is the Reynolds num-
ber. The angular momentum of FMC is a very important
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Fig.3. FMC with rectangular crosssection. 
 
B. The Proposed Model 

In order to obtain a suitable analytical model, the 
flow field is simplified here. This enables the 
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where ep  is the circumference of the pipe crosssection. 
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such an approximation requires R l . Otherwise, the 
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It can be seen that the maximum angular quantity 
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where l  and h  are the positive lengths in the x-axis and 
y-axis directions, respectively. λ  is similar to a 
weighted value, as shown in Figure 5. When λ =0，the 
shape is elliptical, whereaswhen λ =1， the shape is 
rectangular.  
 

Fig. 3. FMC with rectangular cross section.

parameter, which reflects its attitude adjustment ability.
It may be emphasized here that the cross section of the
pipe is the same everywhere, and the whole pipe is cir-
cular with radius R, as shown in Figure 3. According to
the definition of angular volume, the angular momentum
in this annular pipe is as follows:
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In order to obtain a suitable analytical model, the
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tum equation, and then the angular momentum analyti-
cal expression of the FMC can be obtained. For a closed
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considered. According to eqn (6), the electromagnetic
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ing through it. It is obvious that rectangle is the topo-
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we can know from the basic geometry that the circle is
the solution of this problem.

 

 
Fig.4. The proposed shape combining circle and 
rectangle( λ =0.3). 
 

 

 
Fig.5. The various cross-sectional shapes. 
 

Using calculus, the analytic equation for the area of 
the proposed shape can be obtained as follows: 
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Unfortunately, similar to the ellipse, there is no 
analytic expression for the perimeter of the proposed 
shape. The value of the perimeter can be calculated 
numerically with the help of finite element method 
(FEM). 
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This section illustrates the method with a case 
study. Here, a background magnetic field with a fixed 
intensity of 0.1 T and a current DC source of 10A are 
used. The fluid material is liquid metal gallium. The 
kinematic viscosity of gallium is 3.49×10−7m2/s at 
303K. Taking into account the size of the magnetic 
field area and the practical environment, the relevant 
design dimension parameters are shown in Table 1. 
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Design parameters L(m) h(m) λ (m) 
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The complex shape optimization problem of MHD 
background is simplified to the optimization problem of 
three-dimensional design variables, which is to be 
solved by the original particle swarm optimization 
(PSO). 

The process of the shape optimization using the 
proposed shape equation is summarized as follows. 
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ismoved toward a maximum of an objective function.  

To demonstrate the advantages of the proposed 
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geometric and physical parametersare shown in Table 
2.  
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III. METHODS
A. The proposed shape scheme

According to the above study and analysis, it is
known that the electromagnetic driving force depends
mainly on the width of the cross section of the pipe for
the same magnetic field strength and current size. Fur-
ther, it is known that the driving force is maximum when
the pipe shape is rectangular. From the perspective of
the engineering fluid dynamics, the flow loss of the pipe
depends on the hydraulic diameter of the pipe for the
same flow rate and cross-sectional size. When the pipe
shape is circular, the flow resistance of the pipe is the
smallest. Here, the optimal problem for H is regarded
as a multi-objective optimization problem of the opti-
mal problem of with Fe and S2

p2
e
. Thus, this paper pro-

poses a new cross-sectional shape which is intermediate
between circular and rectangular and can be regarded as
a weighted combination of the two, as shown in Figure 4.
The equation is as follows:

(1− λ

2 )(
x2

l2 +
y2

h2 )+
λ

2

∣∣∣ x2

l2 − y2

h2

∣∣∣≤ 1
λ ∈ [0,1]

, (13)

where l and h are the positive lengths in the x-axis and
y-axis directions, respectively. λ is similar to a weighted
value, as shown in Figure 5. When λ =0, the shape is
elliptical, whereas when λ=1, the shape is rectangular.
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Table 1 The design space and initial value
Design parameters L(m) h(m) λ (m)

Lower bound 0.001 0.001 0
Initial values 0.03 0.01 0.5
Upper bound 0.05 0.05 1

Using calculus, the analytic equation for the area of
the proposed shape can be obtained as follows:

S =
πlh√
1−λ

+
2lh√
1−λ

(arcsin

√
1−λ√
2−λ

− arcsin
1√

2−λ
). (14)

Unfortunately, similar to the ellipse, there is no ana-
lytic expression for the perimeter of the proposed shape.
The value of the perimeter can be calculated numerically
with the help of finite element method (FEM).

B. Optimization problems
This section illustrates the method with a case study.

Here, a background magnetic field with a fixed inten-
sity of 0.1 T and a current DC source of 10 A are used.
The fluid material is liquid metal gallium. The kinematic
viscosity of gallium is 3.49 × 10−7m2/s at 303 K. Tak-
ing into account the size of the magnetic field area and
the practical environment, the relevant design dimension
parameters are shown in Table 1.

Overall, the design optimization problem can be
expressed as

find : l,h,λ
max : H f (l,h,λ ) = RFeS2

µ p2
e

st : 0≤ λ ≤ 1
l ≤ lc,h≤ hc,S≤ Sc.

(15)

The complex shape optimization problem of MHD
background is simplified to the optimization problem of
three-dimensional design variables, which is to be solved
by the original particle swarm optimization (PSO).

The process of the shape optimization using the pro-
posed shape equation is summarized as follows.
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analytic expression for the perimeter of the proposed 

shape. The value of the perimeter can be calculated 

numerically with the help of finite element method 

(FEM). 

 

B. Optimization Problems 

This section illustrates the method with a case 

study. Here, a background magnetic field with a fixed 

intensity of 0.1 T and a current DC source of 10A are 

used. The fluid material is liquid metal gallium. The 

kinematic viscosity of gallium is 3.49×10−7m2/s at 

303K. Taking into account the size of the magnetic 

field area and the practical environment, the relevant 

design dimension parameters are shown in Table 1. 

 

Table 1: The design space and initial value 

Design parameters L(m) h(m)  (m) 

Lower bound 0.001 0.001 0 

Initial values 0.03 0.01 0.5 

Upper bound 0.05 0.05 1 

 

Overall, the design optimization problem can be 

expressed as 
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The complex shape optimization problem of MHD 

background is simplified to the optimization problem of 

three-dimensional design variables, which is to be 

solved by the original particle swarm optimization 

(PSO). 

The process of the shape optimization using the 

proposed shape equation is summarized as follows. 

 

Algorithm: The process of the shape optimization 

for FMC cross section 

Begin  

Initial the design variables: , ,l h  , material 

parameters and B, I 

For I =1: n 

CAD, mesh  

If cS S  

Calculate fH  by FEM 

If 
fH <ε break end if 

End if  

New ( , ,l h  ) by PSO to find the maximum of 

fH with all constraints  

End for  

End  

 

IV. RESULTS AND DISCUSSIONS 
The above optimization model is solved by PSO 

and FEM. PSO is a population-based algorithm and is 

widely used in the optimization of multivariable 

problems.A population of particles called a swarm 

ismoved toward a maximum of an objective function.  

To demonstrate the advantages of the proposed 

shape scheme, rectangular section scheme is also 

calculated as a comparative study.The constraints of 

geometric and physical parametersare shown in Table 

2.  

 

Table 2:Constraints of geometric and physical 

parameters  

Property Value Unit 

Table 2 Constraints of geometric and physical parame-
ters

Property Value Unit
lc 0.05 m
hc 0.05 m

Sc

0.005 m2

0.006 m2

cl  0.05 m 

ch  0.05 m 

cS  
0.005 m2 

0.006 m2 

 
In this study, the FEM analysis of electromagnetic 

fields is carried out using COMSOL. The PSO is 
programmed in MATLAB R2019b. The number of 
particles is 36 and the residual tolerance is set to be 10-

5.The optimization program was performed on a 
computer with a 3.6 GHz Intel 9700 CPU and 32 GB of 
memory. 

Figure 6(a) shows the simulation results for a 
general rectangular cross section with the calculated 
angular momentum of 6.3×10−3Nms, 6.68×10−3Nms. 
Figure 6(b) shows the optimized potential with the 
calculated angular momentum of 5.5×10−3Nms 
and5.8×10−3Nms. 
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Fig.6. Potential diagram. (a) The proposed shape.(b) 
The rectangular shape. 
 

Figure 7 shows the optimized current path and 
current density. As shown in the figure, the current is 
more concentrated in the four corner regions. The 
closer λ  is to 1, the more uniform the current 
distribution is. Figure8 shows the electromagnetic force 
density distribution under the action of an ideal vertical 
magnetic field. The same concentration phenomenon 
exists in the four corners. Note that the electromagnetic 
force in the central region is greater than that near the 
boundary. 

 

 

 
(a) 

 

(b) 

  
Fig.7. Current density diagram (the direction of the 
arrow indicates the direction of the current, and the 
length of the arrow responds to the size of the current 
density). 
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Fig.8. Electromagnetic force density diagram.  
 

After this optimization method, the performance of 
FMC can be improved obviously. Table3 shows 
comparisons between the rectangular shape and the 

Fig. 6. Potential diagram. (a) The proposed shape. (b)
The rectangular shape.

IV. RESULTS AND DISCUSSIONS
The above optimization model is solved by PSO and

FEM. PSO is a population-based algorithm and is widely
used in the optimization of multivariable problems. A
population of particles called a swarm is moved toward
a maximum of an objective function.

To demonstrate the advantages of the proposed
shape scheme, rectangular section scheme is also calcu-
lated as a comparative study. The constraints of geomet-
ric and physical parameters are shown in Table 2.

In this study, the FEM analysis of electromagnetic
fields is carried out using COMSOL. The PSO is pro-
grammed in MATLAB R2019b. The number of particles
is 36 and the residual tolerance is set to be 10−5. The
optimization program was performed on a computer with
a 3.6 GHz Intel 9700 CPU and 32 GB of memory.

Figure 6(a) shows the simulation results for a gen-
eral rectangular cross section with the calculated angular
momentum of 6.3 × 10−3Nms, 6.68 × 10−3Nms. Fig-
ure 6(b) shows the optimized potential with the calcu-
lated angular momentum of 5.5 × 10−3Nms and 5.8 ×
10−3Nms.

Figure 7 shows the optimized current path and cur-
rent density. As shown in the figure, the current is
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Fig.8. Electromagnetic force density diagram.  
 

After this optimization method, the performance of 
FMC can be improved obviously. Table3 shows 
comparisons between the rectangular shape and the 

Fig. 8. Electromagnetic force density diagram.

more concentrated in the four corner regions. The closer
λ is to 1, the more uniform the current distribution
is. Figure 8 shows the electromagnetic force density

Table 3 The angular momentum values calculated by
FEM of the proposed shape and rectangular shape

Sc
(m2)

Size
(m)

H f
(mN*
m*s)

Rec-shape 0.05 0.05,0.025 5.5
0.06 0.05,0.0297 5.8

Opt-shape

0.05 0.05,0.0306,
0.204

6.3 14.5%

0.06 0.05,0.0334,
0.525

6.8 17.2%

distribution under the action of an ideal vertical magnetic
field. The same concentration phenomenon exists in the
four corners. Note that the electromagnetic force in the
central region is greater than that near the boundary.

After this optimization method, the performance of
FMC can be improved obviously. Table 3 shows com-
parisons between the rectangular shape and the pro-
posed shape in the terms of angular momentum, and the
enhancement is obvious.

Compared with the general shape optimization, it
has lower computational cost and does not need spline
interpolation.

V. CONCLUSION
In this work, we introduced a shape optimization

method for the cross section of FMC, where we seek
a balance between the shape for maximum electromag-
netic force and the shape for minimum hydraulic resis-
tance, such that the angular momentum is maximized.
The proposed method can provide an optimized cross
section for FMC quickly and efficiently. Compared
with the common rectangular cross-sectional scheme,
the attitude adjustment performance of FMC is obviously
improved. The optimized shape is smooth and continu-
ous and makes the follow-up design work easier.

(1) The article proposes a unified analytical equation
that can both describe rectangular, elliptical, and its
transition shapes simultaneously.

(2) Further, a shape optimization framework is devel-
oped. Its effectiveness is illustrated by an example,
which significantly improves the attitude adjust-
ment performance of FMC.

(3) In addition, the simplified calculation of the flow
field of FMC avoids the complexity of CFD and
makes the whole multidisciplinary optimization
practically operable.
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proposed shape in the terms of angular momentum, and 
the enhancement is obvious.  

Compared with the general shape optimization, it 
has lower computational cost and does not need spline 
interpolation.  

 
Table 3:The angular momentum values calculated by 
FEM of the proposed shape and rectangular shape 

 cS  
(m2) 

Size 
(m) 

fH  
(mN* m*s) 

 

Rec-
shape 

0.05 0.05,0.025 5.5  

0.06 0.05,0.0297 5.8  

Opt-
shape 

0.05 0.05,0.0306,
0.204 6.3 14.5% 

0.06 0.05,0.0334,
0.525 6.8 17.2% 

 
V. CONCLUSION 

In this work,we introduced a shape optimization 
method for the crosssection of FMC, where we seek a 
balance between the shape for maximum 
electromagnetic force and the shape for minimum 
hydraulic resistance, such that the angular momentum is 
maximized.The proposed method can provide an 
optimized crosssection for FMC quickly and efficiently. 
Compared with the common rectangular cross-sectional 
scheme, the attitude adjustment performance of FMC is 
obviously improved. The optimized shape is smooth 
and continuous and makes the follow-up design work 
easier.  

(1) The article proposes a unified analytical 
equation that can both describe rectangular, elliptical, 
and its transition shapes simultaneously. 

(2) Further, a shape optimization framework is 
developed. Its effectiveness is illustrated by an 
example, which significantly improves the attitude 
adjustment performance of FMC.  

(3) In addition, the simplified calculation of the 
flow field of FMC avoids the complexity of CFD and 
makes the whole multidisciplinary optimization 
practically operable. 
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