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Abstract – A novel approach is applied to obtain a
desired pattern for a perfect electric plate with two ports.
The location of ports is decided with the help of charac-
teristic mode analysis. Two capacitive coupling elements
are chosen to be used as excitation. The magnitude and
phase of each excitation are obtained by the Bayesian
inference method. In order to avoid complexity of com-
putational design, a surrogate model, which is based
on polynomial chaos expansion, is built. The surrogate
model is ensured to mimic the computational model over
90%. Then, the desired pattern is compared with the syn-
thesized one, and it is seen that the two patterns fit very
well to each other and the correlation between the two
patterns is above 0.9.

Index Terms – Bayesian inference, characteristic mode
analysis, pattern synthesis, polynomial chaos expansion.

I. INTRODUCTION
Pattern synthesis has been applied extensively in

antenna designs lately since it enhances the performance
of the overall antenna system. Traditionally, phased
array antennas have been used for this purpose by vary-
ing the phase and magnitude of each antenna element
[1–3]. However, if one wants to obtain a pattern synthe-
sis within a single antenna, it is challenging since there
is only one radiator. However, some literature succeeded
to obtain pattern synthesis with an electrically large sin-
gle antenna, such as reflector antennas [4], leaky wave
antennas [5], and horn antennas [6]. On the other hand,
there are few studies that synthesize a pattern within a
single antenna, namely a conducting plate.

Characteristic mode analysis (CMA) is one of the
useful methods to synthesize a desired pattern for a sin-
gle antenna. In CMA, unique features of scattering and
radiation properties can be revealed for any conductive
body of arbitrary shape without any excitation [7–10].

Characteristic modes (CMs) are the real current modes
that can be numerically computed. Since CMs form a
set of orthogonal functions, the total current on the sur-
face of the body is a linear superposition of the CMs.
In CMA, the far-field of each mode is also orthogo-
nal to each other. Hence, the desired pattern is the
selective excitation of each CM [12]. In order to prop-
erly excite the desired CM, capacitive coupling elements
(CCEs) and inductive coupling elements (ICEs) can take
place in antenna design without any alteration of CMs
[13, 14]. Moreover, the desired pattern construction
does not only depend on the selection of the coupling
element’s type and location, but it also depends on the
excitation scheme, i.e., magnitude and phase of each
coupling element. Thus, there are some literature papers
that investigate to obtain the proper excitation scheme to
excite the desired modes and, hence, to obtain the desired
pattern. In [15], a multiobjective optimization method
is applied to electrically small unmanned aerial vehicle
(UAV) and high frequency band antennas for shipboard
structures to obtain the desired pattern. In [16], a desired
up-tilted beam is achieved by using random search opti-
mization of phases. In [17], the asymmetric CM excita-
tion is observed to obtain a null of an antenna pattern for
two ports, and in [18], a linear equation solution is given
considering the phase and magnitude of excitation. In
[19], a compress sensing algorithm is provided for the
desired pattern.

This paper proposes a novel approach to obtain the
proper excitation scheme for a desired pattern within
a single antenna. The approach is based on the
Bayesian inversion that provides the statistical infer-
ence of unknown input parameters. The Bayesian infer-
ence has already been applied to linear antenna array
[20, 21]. However, this paper considers a single antenna,
where the main aim is to prove the applicability of
the proposed method. The Bayesian framework offers
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an input parameter quantification based on the mea-
sured/computed data in the manner of an inverse prob-
lem solving [22]. Indeed, the Bayesian inference method
gives a posterior probability distribution over the input
with repeated solutions of the forward model. For this
purpose, the sampling approach, such as Markov chain
Monte Carlo (MCMC) [23], of the input parameters
have to be applied at every repeated step during the
inverse solution. However, this cannot be affordable
when the forward model is computationally expensive.
In order to apply Bayesian inference to such a com-
putational design, a surrogate model can be built as a
forward model. A surrogate model [24], which is also
called metamodel, is a replacement of the high-fidelity
computational model with a more efficient surrogate one
to avoid the computational burden while studying pre-
diction, optimization, sensitivity analysis, and uncer-
tainty analysis. There are different types of technique
that builds surrogate model, such as polynomial chaos
expansion (PCE) [25–28], artificial neural networks [29],
Gaussian process (Kriging modeling) [30], support vec-
tor machines [31], etc. Among them, PCE is chosen
in this work due to its advantages such as interpreta-
tion and versatility [32]. It has been applied in compu-
tational electromagnetic in various areas [33–37]. The
PCE depends on three main processes: a random sam-
pling of each input parameter, propagation of such ran-
dom inputs through the computational model, and then
obtention of the random outputs. With input and output
data at hand, a model based on the polynomial series can
be built. Within a surrogate model, the Bayesian infer-
ence can be applicable to complex computational mod-
els; hence, one can obtain the values of the excitation
scheme for the desired pattern in a single antenna. The
organization of this paper is as follows: a brief overview
of CMA is given in Section II, and Bayesian inference
and PCE are introduced in Section III. The application
of the proposed method and the results are given in Sec-
tion IV. Final conclusions are given in Section V.

II. CHARACTERISTIC MODE ANALYSIS
CMA provides the inherent current modes without

any excitation and the total current distribution (Jtot) is
calculated by the sum of orthogonal current modes (Jn)

Jtot = ∑
n

αn Jn , (1)

where αn are called modal weighting coefficients
(MWC), and they are related to the current modes Jn.
Jn are natural current distributions that do not depend
on the excitation. On the contrary, MWCs are strongly
dependent on the excitation; thus, the desired current dis-
tribution on the structure under consideration is depen-
dent on the selective excitation of the modes. In order
to excite the desired modes properly, the locations of
the external excitation source (port) should be carefully

Fig. 1. Current distribution on the conducting plate
related to the number of modes (a) 1, (b) 2, (c) 3, (d) 4,
(e) 5, (f) 6, (g) 7, and (h) 8 (arrows indicate the direction
of current).

investigated.
In this paper, a conducting plate with dimensions of

150 × 75 mm2 is considered to obtain a desired pat-
tern. One of the possible patterns that can be obtained
by a PEC plate is a null pattern on the upper half of
the plate, which has been successfully achieved in [17],
where asymmetric excitation of the phase of the ports
are considered and null patterns are obtained between
−30◦ and 30◦. In order to determine the location of
the ports for a desired null pattern, the current distribu-
tion of the first eight modes is investigated with CMA
and the results are illustrated in Figure 1. The loca-
tion of ports can be determined with the current or elec-
tric field maxima of each mode. A desired mode can
be excited by placing a CCE at a current minimum or
placing an ICE at a current maximum [14]. One can see
from Figure 1 that mode 1, mode 4, and mode 8 can be
properly excited by locating the CCE in the middle of
the short edges, where the current is minimum, i.e., the
maximum of E-field. Similarly, CCE can be placed in the
middle of the long edges to excite mode 2, mode 4, and
mode 7. Since the current distributions of mode 4 and
mode 8 are mostly along the y-direction, it is possible
to obtain a null pattern on the upper half of plate. For
that reason, these two modes are desired to be excited by
placing CCE at the minimum current distribution, i.e., at
the middle of the short edges. The overall structure with
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Fig. 2. Overall structure with two CCE ports (L =
25.5 mm, W = 9.5 mm, and h = 4 mm).

two CCE ports is illustrated in Figure 2. Once the loca-
tions of the excitation (two CCE ports) are determined
with the help of CMA, the phase and magnitude of ports
should be specified for a desired pattern. In this work,
this is achieved with a surrogate model and Bayesian
inversion.

III. POLYNOMIAL CHAOS EXPANSION
AND BAYESIAN INFERENCE

A. Polynomial chaos expansion
PCE can be used to build a surrogate model which

substitutes the computationally expensive models with
an easy to work surrogate model. In PCE, the response
of the system (Y) is computed by the independent input
parameters of (X) and the polynomial expansion for
building the surrogate model is given by

Y = ∑
α∈Nm

yα ψα(X), (2)

where the ψα(X) are the multivariate polynomials, α are
the multi-indices that identify the components of ψα(X),
and yα are the expansion coefficients to be determined.
There are two main approaches to compute the expan-
sion coefficients: intrusive and non-intrusive methods.
The former indicates the modification of the underlying
code of the computational model, while the latter one
considers the computational model as a black box; thus,
one does not need to modify the code to build the model.
The least-squares minimization is one of the strategies
that compute the expansion coefficients non-intrusively.
In practice, the infinite sum in eqn (2) needs to be trun-
cated to a finite sum for the computational purpose. In
PCE, the number of polynomial basis P is calculated as

P =

(
M+ p

p

)
, (3)

where M is the number of input variables and p is the
degree of the polynomial. One can understand from eqn
(3) that if the input parameters are high and/or the degree
of the polynomial are set to a high degree to ensure the
accuracy of the surrogate model, then a large number
of polynomials have to be taken into account. To avoid
working with the high-dimensional polynomial basis, the
least angle regression selection (LARS) algorithm can be

applied to reduce the number of polynomial bases. There
are two main ways to estimate the error between the com-
putational model and the surrogate model. The normal-
ized empirical error is a generalization error based on
the accuracy with which the surrogate model reproduces
the computational model evaluations. However, it is also
well-known that if the polynomial model is too com-
plex, an overfitting problem may occur. In order to over-
come this problem, the leave-one-out cross-validation
(errorLOO) technique is usually performed as an alterna-
tive way.

B. Bayesian inference
Bayesian inference is one of the statistical infer-

ence methods that are based on the Bayes’ rule. In this
method, the unknown parameters of the prior probabil-
ity density function (PDF) are inferenced by integrating
prior information and the observations through the infer-
ence of the posterior as

p(x | y) = p(y | x) p(x)
p(y)

, (4)

where x is the parameter vector to be inferenced, y is
the observation, p(x) is the prior probability, p(y) is
the marginal distribution and usually a normalized con-
stant, and p(y | x) is the likelihood function, which mea-
sure the fitness between predictions and observations.
Once the posterior distribution is obtained, then one
can select a point from this distribution to identify the
unknown parameter. One of the choices is the posterior
mean which is the mean value of the posterior distribu-
tion. Another choice is the posterior mode which is also
known as the maximum a posteriori (MAP) and given as
MAP(x) = argmaxx p(x | y). In this inverse procedure,
however, there is no closed-form solution to obtain pos-
terior distribution. One of the well-known methods to
compute the inverse solution is based on MCMC sam-
pling technique. The basic idea of MCMC technique is
to construct Markov chains that are guaranteed to pro-
duce samples distributed according to the posterior dis-
tribution. The theoretical background of the PCE and
Bayesian inference are far beyond the scope of this paper.
For more information on these topics, one can see the
reports [38, 39] and the references therein.

IV. APPLICATION AND RESULTS
A. Pattern synthesis with two CCE ports

In order to obtain a proper excitation scheme for
the desired pattern, a general framework in this study is
given in Figure 3 and summarized as following steps:

1) CMA is applied to the structure under considera-
tion. The current distribution of each mode is inves-
tigated. The locations of ports are identified. Then,
the computational model, including ports, is con-
structed.
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Fig. 3. Proposed procedure for obtaining desired pattern.

2) Random sampling of input parameters (phase and
magnitude of each port) is performed. Then, the
random samples are propagated through the com-
putational model. The output values of the overall
structure, such as gain, total electric field, etc., are
obtained for each random input.

3) The inputs/outputs set given by the computational
model is presented to the PCE to build a surro-
gate model. The accuracy of the surrogate model
is investigated to ensure that the surrogate model
mimics the computational model successfully.

4) The surrogate model is given to the Bayesian
scheme a forward model. Prior distribution is cho-
sen to be consistent with the random sampling
range. Posterior distribution is obtained for the
desired pattern.

5) Post-processing on the results of Bayesian inference
is performed. The MAP is applied to choose the
best candidate for input parameters.

As discussed in Section II, the main aim in this work
is to obtain a null pattern at the upper hemisphere of the
plate, and to achieve that purpose, the first step stated
in Figure 3 is accomplished in Section II. In the next
step, the phase and magnitude of each CCE ports are
randomly and independently sampled between allowable
regions, i.e., [−180◦, 180◦] and [0, 1 V], respectively,
to build a surrogate model. The sampled input is given
to the computational model and the output, namely total
normalized electric field, of each sample is obtained by
method of moments. The number of samples is increased
step by step to ensure that the sample number is ade-
quate for an accurate model. As mentioned in Section
III, the errorLOO is the quantification of how well the
surrogate model mimics the computational model. So,
at each increased step, a surrogate model is built and
the errorLOO is examined. In Figure 4, five elevation
angles are chosen to explore the effect of increased sam-

Fig. 4. Error variation while increasing sample number.

ple number on errorLOO. One can say that the 150 sam-
ples are sufficient to build relatively accurate model since
the errorLOO does not decrease further. This finding is
also observed for all elevation angles. Moreover, the total
errorLOO for all elevation angles is illustrated in Figure 5
for chosen 150 sample numbers. One can keep in mind
that increasing the number of samples will bring a com-
putational burden; hence, the number of samples is kept
as 150 in this work.

Once the surrogate model is built and the accu-
racy of the model is ensured, it is conveyed to the
Bayesian framework as a forward model. Since the
input parameters do not follow any specific distribution,
the prior distributions in Bayesian inference are given
as a uniform distribution between the [−180◦, 180◦]
for phases and [0, 1 V] for magnitudes. The poste-
rior distribution in Bayesian inference is obtained for the

Fig. 5. Error for all elevation angles with 150 sample
numbers.
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Table 1: The excitation scheme for two cases
Phase (degree) Magnitude (volts)

Case 1 Case 2 Case 1 Case 2

D
es

. Port 1 45 −90 0.5 0.75
Port 2 45 90 0.5 0.75

Sy
n. Port 1 −93 −98 0.51 0.69

Port 2 −78 93 0.53 0.69

desired pattern. In this work, the null patterns at various
elevation angles between [−30◦, 30◦] are considered as
the desired pattern. For illustration purpose, two cases
are taken into consideration: case 1 is a desired pattern
with a null at 0◦ and case 2 is a desired pattern with two
nulls at around −30◦, 30◦. Then, the Bayesian frame-
work is conducted, and the results are examined. The
mode of each output distribution is chosen as the best
candidate for phases and magnitudes. As a final step, the
results obtained from Bayesian inference are given to the
computational model to compare the desired pattern with
the synthesized one given by the forward computational
model. The excitation scheme of ports for two cases is
given in Table 1. One can keep in mind that the struc-
ture under consideration exhibits repetitive pattern that
depends on the phase differences between two ports. For
that reason, the desired phase difference is achieved with
different phase values in case 1. In Figure 6, one can
say that the Bayesian framework works well to identify
the magnitude and phase of ports in a single antenna for
obtaining a desired pattern. Moreover, the correlations
between desired and synthesized patterns are 0.9389 for
case 1 and 0.9717 case 2, which indicates that the two
patterns fit very well [12, 14].

B. CCE port design
The dimensions of CCE ports are selected to have an

input impedance to have only real part of impedance at
the operating frequency. For this purpose, the procedure
for obtaining a desired pattern given in Figure 3 is also
applied to choose the dimension of the CCE ports. In this
case, the input parameters for Bayesian framework are
the dimensions of the CCE ports. The varied dimensions
of CCE ports are length, width, and the height of the
CCE from the PEC plate (see Figure 2).

Each input parameter is randomly sampled between
the ranges given in Table 2. The limits of ranges
are deliberately chosen to be comparable with practi-
cal application purposes. A surrogate model is built
with 100 random samples of each input parameter, and
it is conveyed to Bayesian framework as a forward
model. A desired distribution, which mimics a real input
impedance value, is given in Bayesian inference. The
MAP is applied on the results of the Bayesian inference,
and it is obtained that the length L = 25.5 mm, the width
W = 9.5 mm, and the height h = 4 mm are the best candi-

Fig. 6. Desired and synthesized patterns. (a) Case 1. (b)
Case 2.

Fig. 7. Real and imaginary impedances.

dates for a nearly zero imaginary part of the impedance.
The CCE ports are designed with obtained values, and
both real and imaginary parts of port impedances are
illustrated in Figure 7. One can say that the imaginary
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Table 2: CCE port dimensions (in mm)
Length Width Height
[5–65] [2–15] [4–10]

part of the impedance is nearly zero at operating fre-
quency while real part is at around 2.5 Ω. For practical
application purposes, this real impedance can be easily
matched to 50Ω by an impedance matching circuit.

V. CONCLUSION
A procedure for pattern synthesis for an antenna is

proposed. The procedure is based on two main the-
ories: CMA and Bayesian inference. The CMA has
been applied to identify the locations of ports. Two
CCE ports are properly placed on conducting plate. To
avoid the computational complexity, a surrogate model
is built with PCE. The surrogate model is used as a for-
ward model in Bayesian inference to efficiently obtain
the unknown input parameters for a desired pattern. Two
desired patterns that exhibit nulls at upper hemisphere of
the plate are achieved by the proposed procedure with
good agreement. The proposed procedure can be applied
to more complex computational models, which remain
as future works.
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