
305 ACES JOURNAL, Vol. 37, No. 3, March 2022

Design and Development of Substrate Integrated Waveguide Based Filtenna
for X Band Application

G. S. Annie Grace Vimala1, V. R. Prakash2, A. Akilandeswari1, D. Sungeetha1, and
M. Saravanan3

1Department of Electronics and Communication Engineering, Saveetha School of Engineering,
SIMATS, Chennai 602105, India

anniegracevimalags.sse@saveetha.com, akilandeswaria.sse@saveetha.com, sungeethad.sse@saveetha.com

2Department of Electronics and Communication Engineering, Hindustan Institute of Technology and Science,
Chennai 603103, India

Prakashkrishna53@gmail.com

3Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of
Science and Technology, Chennai 600062, India

msarawins@gmail.com

Abstract – In this paper, substrate integrated waveguide
based filtenna operating at X band is proposed. The
model is designed on a low-loss dielectric substrate hav-
ing a thickness of 1.6 mm and comprises shorting vias
along two edges of the substrate walls. To realize a band-
pass filter, secondary shorting vias are placed close to
primary shorting vias. The dimension and position of
the vias are carefully analyzed for X band frequencies.
The model is fabricated on Roger RT/duroid 5880 and
the performance characteristics are measured. The pro-
posed model achieves significant impedance characteris-
tics with wider bandwidth in the X band. The model also
achieves a maximum gain of 7.46 dBi in the operating
band, thus making it suitable for X band applications.

Keywords – Antenna radiation patterns, filtenna,
microstrip patch, rectangular wave guide (RWG), sub-
strate integrate waveguide (SIW).

I. INTRODUCTION
Due to the increase in demand for multifunctional

antennas in wireless communications, the size of the
antenna profile is greatly reduced and also provides bet-
ter feasibility in integration with high-frequency cir-
cuits. Recently, filtenna becomes popular since the RF
space is occupied with much of the available spectrum,
and, hence, the role of the filter along with the antenna
becomes crucial. The substrate integrated waveguide
(SIW) has proven to be a good choice because of its
modular integration and low cost [1]. Most of the litera-
ture discusses the design of filter and antenna separately
and are coupled with a 50 Ω impedance matching circuit

which consumes much space in the antenna profile [2].
This can be replaced by placing a single filtenna design
which reduces the overall antenna profile and also elimi-
nates the need for an additional 50 Ω impedance match-
ing circuit [3]. Utilization of both SIW technology along
with filtenna further improves the antenna profile size
and also improves the ease of fabrication and integration
[4–6]. A compact SIW-based filtenna comprising the
parasitic patch is proposed [7]. The model utilized a half-
mode substrate integrated rectangular cavity to reduce its
overall antenna size. In [8], an analysis of SIW structure
for rat race couple is proposed. An SIW-based filtenna
with reconfigurable nulls by means of electric and mag-
netic coupling structure is demonstrated [9]. Filtenna can
also be designed by utilizing the synthesis of filter struc-
tures by placing vertical cavities as in [10]. Similarly,
the filtenna can also be realized by placing three verti-
cal cavities integrated with each other to achieve a wider
FBW ratio. However, an increasing number of filter cav-
ities to improve FBW results in wider profile thickness.
A low-profile SIW-based filtenna is reported [11] with
improved bandwidth characteristics that utilize a com-
plementary split-ring resonator (CSRR) over the SIW
structures. Most of the literature discusses filtenna oper-
ating at narrowband and also these filtenna are designed
at lower operating frequencies with lossy transmission
lines or with other complex geometries. Hence, there
is need for designing filtenna with wide operating range
and also with better miniaturization. In this paper, an
SIW-based filtenna with improved bandwidth and radia-
tion characteristics is proposed. The antenna is modeled
on a low-loss roger substrate with a profile thickness of
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1.6 mm which makes it feasible for the integration of
other high-frequency circuits. The antenna is analyzed
and fabricated to measure its performance characteristics
and compared with other conventional models. More-
over, the filtenna exhibits sharp cutoff bands around the
operating bands which makes it ideal for X band appli-
cations.

II. SUBSTRATE INTEGRATED WAVEGUIDE
GEOMETRY

The dielectric-filled metallic waveguide can be real-
ized by means of substrate integrated waveguide [12]
which exhibits similar propagation characteristics. The
design of the proposed antenna is as shown in Figure 1.
The width “W” of SIW is calculated from center-to-
center distance between the rows of vias. Each via has
spacing “p” and has radius “r.” The length of dielectric
layer is “L.” Let a and b denote the width and height of
the rectangular waveguide, respectively. Assuming a >
b, the propagating mode with the lowest cutoff frequency
is TE10 (dominant mode). We calculate the radius of via
using

a =
C

2 fcio
√

εr
. (1)

The cutoff frequency of each propagating mode

fcmm =
C

2
√

εr

√(m
a

)2
+
(n

a

)2
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where C is the speed of light in vacuum, m and n are
mode numbers, and a and b are dimensions of the waveg-
uide. For TE10 mode, the cutoff frequency is given
as fc =

c
2a . For SIW, the dimension ds is the distance

between the SIW walls and is given by ds = ad +
d2

0.95p ,
where ad = a√

εr
where d is the diameter of via and
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Table 1 Geometry of SIW
Parameter Specification

λg 9.25 mm
L × B 25 mm × 30 mm

P 2 mm
d 1 mm
ds 15.77 mm

p (p must satisfy p < 2d) is the distance between the
vias. The guided wavelength is calculated from λg =

2π√
εr(2π f )2

c2 −( π
a )

2
and d must satisfy d <

λg
5 .

Based on the design equations, the geometry of the
SIW along with two-slot geometry is shown in Figures 1
and 2 and its corresponding dimensions are given in
Table 1 .

The surface current distribution at different
instances of time “t” over the geometry is shown in
Figure 3. The surface current distribution exhibits
sinusoidal variation in the variations of the field on
the surface of the structure and is confined within the
SIW walls above its operating frequency. The antenna
is modeled on roger duroid 5880tm having a relative
permittivity of 2.2 and thickness of 1.6 mm. The−10 dB
reflection coefficient curve corresponding to both SIW
with and without slot geometry is given in Figure 4. The
structure achieves −10 dB impedance characteristics
over its entire operating X band which comprises 8–12
GHz with a cutoff frequency of 6.5 GHz.

SIWs have similar radiation characteristics when
compared to dielectric filled metallic waveguide as
shown in Figure 4 (S11 plot). Hence, longitudinal slots
having a length of λg/2 are incorporated in the SIW
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The attenuation constant α is given by

α=− 1
2L

ln
(
|S11|2+|S21|2

)
(4)

where L is the aperture length. Figure 6 shows the nor-
malized attenuation characteristics of the SIW compared
with slotted SIW structure. It is inferred that the struc-
ture attains minimum attenuation at its operating band.
The dispersion characteristics of the antenna are deter-
mined from phase constant and attenuation constant of
the proposed SIW structure.

III. HIGHER ORDER INDUCTIVE BASED
FILTER DESIGN

A higher order inductive filter is proposed as shown
in Figure 5. The filter comprises metallic vias placed to
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provide inductive window having a width of Wi (i ∈ 1,2)
and length of the cavity resonators are given by 2p as
shown in Figure 5. The coupling coefficient between the
filter sections is given by K and the resonating frequency
of the filter is given by

F101 =
C

2π
√

µrεr

√(
π

Wi

)2

+

(
π

Li

)2

(5)

where Li = 2∗ p.

IV. SIW-BASED FILTENNA
The proposed antenna geometry is integrating both

SIW and filtenna as shown in Figure 7. The model
utilizes microstrip to SIW transition [12] connected to
50 Ω microstrip line and integrated with SIW. The feed
line is tapered need the antenna feeding point for better
matching the impedance of the SIW structure with the
input. The width and length of the tapered section are
designed and optimized for impedance matching espe-
cially at higher frequencies.

The antenna is fabricated on low-cost roger substrate
having a relative permittivity of 2.2 and a thickness of 1.6
mm. The model is connected with 50 Ω SMA connector.

In order to validate the performance characteristics
of the antenna model, the performances of the prototype
are measured and are compared with simulated results.

The impedance characteristics of the filtenna for
both simulated and measured results are shown in Figure
8. The reflection coefficient curve corresponding to fil-
tenna geometry achieves −10 dB impedance character-
istics over its entire operating X band which comprises
8–12 GHz with sharp rolloff around its operating band.
The radiation characteristics of the antenna are measured
by the three-antenna gain method and the gain of the pro-
posed model is calculated by means of the Friss transmis-
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The simulated and measured radiation characteristics of 

the antenna model are shown in Figure 9. The antenna 

radiation pattern is measured inside the anechoic 

chamber. The antenna achieves a symmetrical radiation 

pattern with a peak gain of 7.18 dBi for simulated and 
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the operating band (8−12 GHz). Since the ground plane 

is limited due to its size limit, there is small amount of 
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Fig. 10. Radiation characteristics.

sion equation given below

Pr = GtGrPt

(
λ

4πr

)2

. (6)

The simulated and measured radiation characteris-
tics of the antenna model are shown in Figure 9. The
antenna radiation pattern is measured inside the anechoic
chamber. The antenna achieves a symmetrical radiation
pattern with a peak gain of 7.18 dBi for simulated and
6.94 dBi for measured at its 10 GHz center frequency in
the operating band (8–12 GHz). Since the ground plane
is limited due to its size limit, there is small amount of
back radiation seen in the radiation pattern.

The proposed antenna is placed in line of sight with
transmitting antenna inside the anechoic chamber. The
realized gain corresponding to the proposed antenna is
noted for different frequencies in the operating band and
is compared with simulated gain as shown in Figure 10.
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transmitting antenna inside the anechoic chamber. The 

realized gain corresponding to the proposed antenna is 

noted for different frequencies in the operating band 

and is compared with simulated gain as shown in 
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V. CONCLUSION 
A compact SIW-based filtenna operating at X band 

frequencies is proposed. The model utilizes filter 

section integrated with SIW-based slotted section. The 

microstrip to taper transition is used for impedance 

matching and is terminated with 50 Ω transmission line. 

The model is analyzed for dispersion characteristics and 

is fabricated on low-cost substrate. The prototype 

attains resonates at 8−12GHz in the X band region with 

a peak gain of 7.18 dBi for simulated and 6.94 dBi for 

measured at its resonant frequency.  
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V. CONCLUSION
A compact SIW-based filtenna operating at X band

frequencies is proposed. The model utilizes filter sec-
tion integrated with SIW-based slotted section. The
microstrip to taper transition is used for impedance
matching and is terminated with 50 Ω transmission line.
The model is analyzed for dispersion characteristics and
is fabricated on low-cost substrate. The prototype attains
resonates at 8–12GHz in the X band region with a peak
gain of 7.18 dBi for simulated and 6.94 dBi for measured
at its resonant frequency.
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