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Abstract – A design method based on the lossy metagrat-
ing for radar cross section (RCS) reduction is proposed
in this paper. According to the mechanism of the RCS re-
duction, the lossy metagrating with different loaded lines
per supercell is studied and it is also incorporated into the
metasurface to reduce RCS. The embedded metagrating
provides an additional low-RCS band and it has a small
effect on the original band of the metasurface. Numeri-
cal results show that the metagrating reduces RCS of the
surface effectively.

Index Terms – Diffraction pattern, lossy metagrating,
low-RCS, metasurface.

I. INTRODUCTION
Metasurfaces have been used for the reduction of the

radar cross section (RCS) of target objects [1–4]. The
fundamental mechanisms of a metasurface for RCS re-
duction are absorption and scattering control of electro-
magnetic waves [5]. The methods used for the analysis
of a metasurface, such as the equivalent circuit method
and transmission matrix method, take the metasurface
as an impedance surface [6]. The size of the element
of the metasurface and the separation distances between
the elements are in the scale of subwavelength. Thus,
it is costly to apply tunable and lumped elements to the
metasurface.

Metagratings are proposed for the perfect anoma-
lous reflection and then extended for controlling the
diffraction pattern [7–10]. A loss-free metagrating pro-
vides an effective way to control the diffracted plane
waves. The separation distance between two neighboring
lines in a metagrating is bigger than half of the vacuum
wavelength and the surface impedance is not available
for calculation. The metagrating has the smaller num-
ber of lines than the metasurface with the same size and
working frequency [7, 11]. So, the metagrating requires
fewer lumped elements than the metasurface on a similar
occasion.

In this paper, the lossy metagratings are designed to
reduce RCS when they cover the target objects. Resistors
are loaded to a loss-free metagrating, and the obtained
lossy one, as far as we know, has not been studied for
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I. INTRODUCTION 
Metasurfaces have been used for the reduction of the 

radar cross section (RCS) of target objects [1−4]. The 
fundamental mechanisms of a metasurface for RCS 
reduction are absorption and scattering control of 
electromagnetic waves [5]. The methods used for the 
analysis of a metasurface, such as the equivalent circuit 
method and transmission matrix method, take the 
metasurface as an impedance surface [6]. The size of 
the element of the metasurface and the separation 
distances between the elements are in the scale of 
subwavelength. Thus, it is costly to apply tunable and 
lumped elements to the metasurface. 

Metagratings are proposed for the perfect anomalous 
reflection and then extended for controlling the 
diffraction pattern [7−10]. A loss-free metagrating 
provides an effective way to control the diffracted plane 
waves. The separation distance between two 
neighboring lines in a metagrating is bigger than half of 
the vacuum wavelength and the surface impedance is 
not available for calculation. The metagrating has the 
smaller number of lines than the metasurface with the 
same size and working frequency [7, 11]. So, the 
metagrating requires fewer lumped elements than the 
metasurface on a similar occasion. 

In this paper, the lossy metagratings are designed to 
reduce RCS when they cover the target objects. 
Resistors are loaded to a loss-free metagrating, and the 
obtained lossy one, as far as we know, has not been 

studied for RCS reduction. A uniform metagrating 
loaded with the resistors, which consists of only one 
line per element, is first studied on its electromagnetic 
properties. The lossy metagrating provides a frequency 
band to absorb the incident plane wave while the loss-
free metagrating cannot absorb the wave. Second, a 
lossy metagrating including five lines per supercell is 
also designed. By diffusing the diffracted plane waves, 
the RCS of the surface is reduced effectively. The lossy 
metagrating shows its lower reflection results than the 
loss-free one. Finally, the lossy metagrating that 
produces an extra absorbing band is incorporated into 
the low-RCS metasurface to obtain the better absorbing 
ability. 
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Fig. 1. Metagrating on a grounded dielectric substrate. 
(a) Metagrating. (b) An element in the supercell. 
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printed on a grounded dielectric substrate and is 
composed of a quantity of conducting lines is shown in 
Figure1. The lines are along the y-direction, the 
separation distance between two neighboring lines is Px, 
and the thickness of the substrate is h. Each line is 

Fig. 1. Metagrating on a grounded dielectric substrate.
(a) Metagrating. (b) An element in the supercell.

RCS reduction. A uniform metagrating loaded with the
resistors, which consists of only one line per element, is
first studied on its electromagnetic properties. The lossy
metagrating provides a frequency band to absorb the in-
cident plane wave while the loss-free metagrating cannot
absorb the wave. Second, a lossy metagrating includ-
ing five lines per supercell is also designed. By diffusing
the diffracted plane waves, the RCS of the surface is re-
duced effectively. The lossy metagrating shows its lower
reflection results than the loss-free one. Finally, the lossy
metagrating that produces an extra absorbing band is in-
corporated into the low-RCS metasurface to obtain the
better absorbing ability.

II. LOW-RCS METAGRATING
A two-dimensional (∂/∂y = 0) metagrating that is

printed on a grounded dielectric substrate and is com-
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posed of a quantity of conducting lines is shown in Fig-
ure 1. The lines are along the y-direction, the separation
distance between two neighboring lines is Px, and the
thickness of the substrate is h. Each line is loaded by
an impedance of Zl alone the y-direction and it is con-
sidered as a uniform impedance line with Z = Zl /Py. The
impedances are loaded with a periodicity of N; so N lines
form a supercell with a length of L = NPx. The meta-
grating is excited by a transverse electric (TE) polarized
plane wave at an angle of θ inc. Due to the presentation
of the grounded substrate, the reflected plane wave will
be also taken as the excitation.

From the Floquet-Bloch (FB) theory, the induced
current on the line in the mth supercell is defined as

Jy,m =
N

∑
n=1

ŷInδ (x− xm
n ,z−h)e−jk0mLsinθinc , (1)

where δ is the Dirac function, xm
n = mL+(n−1)Px, In

is the induced current of the nth line in a supercell, and
k0 is the vacuum wavenumber. The diffraction waves are
produced by the excitation and the induced currents on
the lines. The induced currents are determined by the
excitation and the loaded impedance. The radiation pat-
tern of the metagrating is available when the excitation
and loaded impedance are known. After the design of the
loaded impedance of the metagrating, the diffraction pat-
terns can be controlled. The designed loaded impedances
are realized with the distributed parameters and lumped
resistors.

The transverse and longitudinal wavenumbers of
the qth diffracted plane wave are calculated by ξ q =

k0sin(θ inc) + 2πq/L and βq =
√

k2
0−ξ 2

q , respectively.
When |ξ q|< k0, the qth diffracted plane wave is prop-
agating. The diffracted wave is evanescent when |ξ q|>
k0 and proper β q is taken. The magnitudes of the electric
field of the incident wave and qth reflected plane wave
are denoted as Ainc

0 and Aref
q , respectively. We denote P

as a set that contains all the index of the reflected propa-
gating waves. The reflected propagating waves are con-
trollable when the dimension of P is smaller than N.

A. Lossy metagrating with only one loaded line per
supercell

The lossy component is not involved in the meta-
grating above. The lossy metagrating can be realized
by taking Zl as a complex number and the correspond-
ing equations about the current and impedance still work
well. We design a low-RCS metagrating working at f 0=
5GHz and there is only one loaded line in a supercell.
Zl is designed so that the normally incident plane wave
is absorbed by the metagrating. The size and the loaded
resistor of the supercell are calculated by Zl . The meta-
grating, in this paper, is designed based on the theory
where the incident wave is the TE wave.
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Figure2, where the black part is the perfect electric 
conductor (PEC) with a thickness of 0.035mm and the 
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by the periodic boundary condition (PBC) and excited by 
a normally incident plane wave. The relative permittivity 
of the dielectric substrate in this paper is εr = 4.4(1 + 
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Fig. 2. Supercell of the uniform lossy metagrating, where
Px0= 42 mm, Py0= 12 mm, h0= 5 mm, w0= 1 mm, lx0=
1.2 mm, ly0= 11 mm, and R0= 26 Ω.

A supercell of the designed metagrating is shown
in Figure 2, where the black part is the perfect electric
conductor (PEC) with a thickness of 0.035 mm and the
white part is the loaded lumped resistor. It is surrounded
by the periodic boundary condition (PBC) and excited by
a normally incident plane wave. The relative permittivity
of the dielectric substrate in this paper is εr = 4.4(1 +
0.02j). Px0 is bigger than 0.5λ 0, where λ 0 is the vacuum
wavelength at the frequency of f 0.

The performance of the lossy metagrating is shown
in Figure 3. For θ inc= 0◦ and θ inc = 45◦, we get P = {0}
and P = {−1, 0}, respectively. The magnitudes of the
reflected wave are shown in Figure 3(a) when θ inc = 0◦

and θ inc = 45◦. The relative bandwidth with ||< −10 dB
is about 10% when θ inc = 0◦. There are two diffracted
propagating plane waves when θ inc = 45◦, ||< −5 dB,
and ||<−5 dB at 5 GHz. Some power is absorbed by the
lossy metagrating and the absorption rate is defined as

Absorption (%) =
β0|Ainc

0 |2−∑q∈? βq|Aref
q |2

β0|Ainc
0 |2

. (2)

From Figure 3(b), the incident power is mainly ab-
sorbed by the metagrating when θ inc= 0◦ and f 0= 5 GHz.
Half of the power is reflected by the metagrating when
θ inc= 45◦ and f 0= 5 GHz. The substrate also loses some
of the incident power. The resistance of the loaded re-
sistor of the metagrating is much smaller than that of a
metasurface absorber. The fundamental mechanisms of
the low-RCS metagrating are absorption when θ inc= 0◦

and absorption and scattering control when θ inc = 45◦.

B. Lossy metagrating with five loaded lines per super-
cell

The metagrating with multiple loaded lines in a su-
percell is studied and the metagrating with five loaded
lines per supercell is taken as an example. Both loss-free
and lossy metagratings are studied here. The loaded re-
actance of the loss-free metagrating is designed so that
the reflected propagating waves have an equal amplitude
with a normally incident plane wave. The sizes of the



WANG, SHAO, LI, WANG: LOW-RCS SURFACE DESIGN BASED ON LOSSY METAGRATINGS 322

q=0

 θinc=0deg

 θinc=45deg

q=0

q=-1

4.0 4.5 5.0 5.5 6.0
-20

-15

-10

-5

0
|A

re
f |

Frequency  (GHz)

dB

 
(a) 

4.0 4.5 5.0 5.5 6.0
0.00

0.25

0.50

0.75

1.00

45deg

0 deg

A
bs

or
pt

io
n 

  %

Frequency  (GHz)  
(b) 

Fig. 3. Radiation performance of the uniform lossy 
metagrating. (a) Reflection. (b) Absorption. 

From Figure3(b), the incident power is mainly 
absorbed by the metagrating when θinc = 0°and f0 = 5GHz. 
Half of the power is reflected by the metagrating when 
θinc = 45°and f0 = 5GHz. The substrate also loses some of 
the incident power. The resistance of the loaded resistor 
of the metagrating is much smaller than that of a 
metasurface absorber. The fundamental mechanisms of 
the low-RCS metagrating are absorption when θinc = 
0°and absorption and scattering control when θinc = 45°. 
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the reflected propagating waves have an equal 
amplitudewith a normally incident plane wave. The 
sizes of theelements are determined by the method 
proposed in [9].The lossy metagrating takes the same 
geometry of the element as theloss-free one and uses 
the optimized lumped resistors so thatall the reflected 
waves are suppressed. Both the loss-free and lossy 
metagratings are symmetrical and only three elements 
are needed to be designed. 
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Fig. 4. Metagrating with multiple elements. (a) Loss-free 
metagrating. (b) Lossy metagrating. Px1 = 30mm, Py1 = 
12mm, ly1 = 11mm, w1 = 1mm, lx1 = 1mm, lx2 = 2.2mm, lx3 
= 3mm, R1 = 15 Ω, R2 =25 Ω, and R3 = 45 Ω. 
 

The geometry of the designed metagratings is shown 
in Figure4. Here,Px1 = 0.5λ0 at f0 = 5GHz and the 
thickness of the substrate is 5mm. P={−2, −1, 0, 1, 2} 
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qq AA −=  are obtained when the TE wave 
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The diffracted performance of the metagratings is 
shown in Figure5. We provide only the results of three 
plane waves due to the symmetry of the structures. The 
reflected waves have an equal amplitude at 5GHz for 
the loss-free metagrating and there is a bandwidth of 20% 
with | ref
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<−10dB, q∈P is about 20%. The bandwidth is about 
the double of that of the lossy metagrating with only 
one element per supercell on the same dielectric 
substrate. The metagrating with multiple elements per 
supercell has a better low RCS performance than the 
metagrating with only one element. The absorption 
performance of the metagratings, calculated by eqn (1), 
is shown in Figure6. The energy consumption in the 
loss-free metagrating results from the lossy substrate. 
The fundamental mechanisms of the designed low-RCS 
metagrating with five elements per supercell are both 
absorption and scattering control. 
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From Figure3(b), the incident power is mainly 
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Fig. 4. Metagrating with multiple elements. (a) Loss-
free metagrating. (b) Lossy metagrating. Px1= 30 mm,
Py1= 12 mm, ly1= 11 mm, w1= 1 mm, lx1= 1 mm, lx2=
2.2 mm, lx3= 3 mm, R1= 15 Ω, R2=25 Ω, and R3= 45 Ω.

ement per supercell on the same dielectric substrate. The
metagrating with multiple elements per supercell has a
better low RCS performance than the metagrating with
only one element. The absorption performance of the
metagratings, calculated by eqn (1), is shown in Figure
6. The energy consumption in the loss-free metagrating
results from the lossy substrate. The fundamental mech-
anisms of the designed low-RCS metagrating with five
elements per supercell are both absorption and scattering
control.

III. LOW-RCS METASURFACE EMBEDDED
WITH THE METAGRATING

The low-RCS bands of the lossy metagratings de-
signed above are narrow compared with the metasur-
face with the same substrate, which reduces the scope
of application. In this section, we design a dual-band
low-RCS metasurface embedded with a lossy metagrat-
ing. The lossy metagrating provides an extra narrow low-
RCS band and has a small effect on the original low-RCS
band of the metasurface.

The low-RCS metasurface is designed based on the
polarization converter and scattering cancelation. The
structure and performance of the element of the meta-
surface are shown in Figure 7. The thickness of the sub-
strate is 2.5 mm and θ inc= 0◦. The bandwidth with the
co-polarized reflections |Rxx|= |Ryy|< 0.3 is 78% (8.5-
19.5 GHz) and |Rxx|= |Ryy|= 1 at 5 GHz. Arranging
the elements as the chessboard configuration, we obtain
a 78% bandwidth with low RCS. By taking the cross-
polarized reflections |Rxy|= |Ryx|= 0 at 5 GHz, the chess-
board metasurface works as a uniform isotropic metasur-
face at 5 GHz. The method proposed for the design of
metagrating in [9] is used with the consideration of the
metasurface.

The structure of the designed low-RCS metasurface
embedded with the metagrating is shown in Figure 8.
The separation between the loaded lines is 36 mm and
it is bigger than 0.5λ 0. The diffraction performance of
the metasurface embedded with the metagrating under
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Fig. 5. Reflection performance of the metagrating with
multiple elements. (a) Loss-free metagrating. (b) Lossy
metagrating.
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RCS band of 2% at 5 GHz and the original low-RCS
band remains almost unchanged.

IV. CONCLUSION
The lossy metagrating is proposed to reduce RCS

under the illumination of TE-polarized waves in this pa-
per. The metagratings with both single element and
multiple elements per supercell are studied. The theory
based on the loss-free metagrating is used for the design
of low-RCS metagrating, and numerical results show that
lossy metagrating reduces the RCS effectively. The lossy
metagrating is also incorporated into a wideband low-
RCS metasurface to provide an extra low-RCS band and
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has a negligible effect on the low-RCS band of the meta-
surface. The metagrating has lesser elements than the
metasurface and is conveniently loaded with lumped el-
ements for RCS reduction.
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