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Abstract─ This paper presents an investigation 
into the electromagnetic scattering characteristic 
of two-dimensional (2-D) layered rough surfaces 
by using a finite-difference time-domain (FDTD) 
algorithm, which constitutes a three-dimensional 
scattering problem. The uniaxial perfectly matched 
layer  medium is adopted for truncation of FDTD 
lattices, in which the finite-difference equations 
can be used for the total computation domain by 
properly choosing the uniaxial parameters. The 
upper and down rough surfaces are characterized 
with Gaussian statistics for the height and the 
autocorrelation function. The angular distribution 
of bistatic scattering coefficent from a 2-D single-
layered rough surface is calculated, and it shows 
good agreement with the numerical result through 
the Kirchhoff Approximation except for with large 
scattering angles. Finally, the bistatic scattering 
coefficents versus scattered and azimuthal angle 
for different conditions are analyzed in detail. 
  
Index Terms─ Finite difference time domain 
(FDTD), electromagnetic scattering, rough surface. 
 

I. INTRODUCTION 
The electromagnetic scattering from a randomly 

rough surface has attracted considerable interest in 
the fields of radar surveillance, surface physics, 
and remote sensing of the ocean and soil. The 
analytical technique [1] and numerical techniques 
[2-3] have been developed for the efficient 
analysis of scattering by a single-layered rough 
surface. However, when the electromagnetic wave 
is incident on stratified soil, sand cover of arid 
regions, or ice and oil on the sea surface, it is 
necessary to investigate the scattering from 
multilayered rough surfaces. There have been 
some studies on the scattering from layered rough 
surfaces in recent years. Tabatabaeenejad, et al. [4] 

analyzed the bistatic scattering from two-
dimensional (2-D) stratified rough surfaces by 
using the small perturbation method (SPM). Some 
numerical methods are also used to solve the 
scattering characteristic from 1-D or 2-D layered 
medium, such as the forward-backward method 
with spectral acceleration [5], the extended 
boundary condition method (EBCM) [6], and the 
steepest descent fast multipole method (SDFMM) 
[7]. In this paper, the finite-difference time-
domain (FDTD) algorithm is utilized to analyze 
the electromagnetic scattering from 2-D layered 
rough surfaces. As for the FDTD algorithm 
applying to rough surface scattering is concerned, 
Hastings et al. analyzed the scattering from 1-D 
rough surface using the FDTD method with PML 
absorbing boundary [8]. Kuang et al. adopted the 
FDTD method to study the composite scattering 
from a target above the 2-D periodic rough surface 
[9]. In our previous work, this method with Mur 
and UPML absorbing boundary was utilized to 
solve the composite scattering from a target above 
1-D randomly rough surface [10, 11]. Comparing 
the FDTD algorithm with other numerical 
methods, there are some advantages: the rough 
surface may be PEC and dielectric, which is due to 
the reason that any other change need not be done 
in the origina1 FDTD code except the part where 
the material constants are set in each cell. In 
addition, the results obtained by this method are in 
the time domain, and can indicate both the 
transient behavior as well as the steady state. 

In the paper, the uniaxial perfectly matched 
layer (UPML) medium is adopted for truncation of 
FDTD lattices . In the uniaxial medium the finite-
difference equations are suitable for the whole 
computation domain due to the field satisfy 
Maxwell’s equations, which makes the problem 
simple. The paper is organized as follows: the 
theoretical formulae of calculating scattering fields 
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by FDTD are developed in Section II. The bistatic 
scattering coefficent versus scattered and 
azimuthal angle are presented and discussed in 
Section III for different conditions. Section IV 
ends with the conclusions of the paper and 
proposes further investigations in this topic. 
 
II. BISTATIC SCATTERING FROM 2-D 

LAYERED ROUGH SURFACES 
The geometry for 2-D layered rough surfaces is 

shown in Fig. 1, where the scattering model is 
composed of three homogeneous layers: the air, 
the upper medium layer with the finite thickness 
H , and the lower medium layer with infinite 
depth. The upper interface  1 ,f x y  and lower 
interface  2 ,f x y  are characterized with Gaussian 
statistics for the height and the autocorrelation 
function. The parameters 1 , 2  represent the 
relative dielectric constants of the upper medium 
layer and the lower medium layer, respectively. 

 
 
Fig. 1. Geometry of 2-D layered rough surfaces. 
 

 
Fig. 2.  Division model of computation region for 
the FDTD algorithm. 

A. Simulation of Rough Surface and FDTD 
Model 

In this section, a two-dimensional Gaussian 
randomly rough interface is simulated by Monte 
Carlo method [12]. It is assumed that the size of 
the rough surface is S L L  , and  N  is the 
number of the points discretized in the x - and y -
directions. The rough surface profile ( , )f x y is 
expressed as: 
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where 0 1j   , 2
xm

mK
L


 and ,
2=y n

nK
L
 are the 

discrete set of spatial frequencies. To generate a 
real sequence, the requirement for  ,xm ynF K K is as 
follows 

   , ,xm yn xm ynF K K F K K             (3a) 

   , ,xm yn xm ynF K K F K K               (3b) 
( , )xm ynW K K is the power spectral density function 

of Gaussian rough surface [12] given by: 
2 2 22 2

( , ) exp( )
4 4 4

x y yn yxm x
xm yn

l l h K lK lW K K


   ,      (4) 

where, h  is the root mean square (rms) of random 
surface height. xl and yl are the correlation lengths 
along the x - and y -directions. 

It is important for us to know the division of the 
computation region with FDTD algorithm in 
calculating electromagnetic scattering from 2-D 
layered rough surfaces. Figure 2 shows the section 
plane along the x direction of the FDTD 
computation region. The incident wave is 
generated on the connective boundary, and the 
UPML absorbing medium is the outer boundary of 
FDTD region. In addition, the output boundary 
must be set to do a near-to-far transformation to 
obtain the far fields.  
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B. UPML Absorbing Boundary 
In theory, the computational domain should be 

unbounded due to the scattered field existing in the 
infinite free space, but no computer can store an 
unlimited amount of data. To deal with the 
conflict, a virtual absorbing boundary must be 
built, and the outgoing waves have to propagate 
outward without non-physical reflection from the 
boundary. There have been many absorbing 
boundary conditions developed to implement this 
in the FDTD algorithm. Where, the UPML 
absorbing medium [13] is used to terminate the 
FDTD lattices, in which the finite-difference 
equations can be used for the total computation 
domain due to the fields satisfying Maxwell‘s 
equations (Ampere’s law and Faraday’s law). This 
makes the algorithm efficient since one does not 
have to take special care of the interface plane 
between the boundary and the interior regions. In 
addition, the uniaxial medium can be perfectly 
matched to an interior lossy medium without any 
modification except for properly choosing the 
uniaxial parameters. In the uniaxial medium, 
Ampere’s law and Faraday’s law in the xyz
coordinate are expressed as 

0 1 1
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0 1 1
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where, 1 , 1 , 1  represent the electrical 
permittivity, the magnetic permeability, and the 
electric conductivity in the interior medium. xs , ys
and zs  are only spatially variant along the x , y , 
and z directions, 0 0x x xs k j w   , 

0 0y y ys k j w   , and 0 0z z zs k j w   , 
referring to [13]. In equation(5), for Ampere’s law 
the intermediate variables xP  , yP  , zP  and xP , yP , zP  

are introduced as 

     ,y z
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       ,x x yP P s    ,y y zP P s   z z xP P s        (7)  
and for Faraday’s law, the intermediate variables

xB , yB , and zB are inserted 

1 ,z
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x
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Using a Fourier transform where 0j w t  , the 
equations above can be transformed into the time 
domain. Thus, in Ampere’s law the electric fields 
in the constant x  plane are obtained by the 
following relations ,y z x x xH H P P E   , i.e., 
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Similarly, in Faraday’s law the magnetic field in 
the constant x plane is deduced by the relations 

,y z x xE E B H   

0
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y z t
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 .     (10b)  

For planes of constant y  or constant z  the 
uniaxial parameters are simply permuted and 
similar expressions can easily be derived. 

C. Connective Boundary 
The connective boundary divides the 

computation region into the total field region and 
the scattered field region. The total field region 
contains the incident field and the scattered field, 
but the scattered field region only includes the 
scattered field [14]. It will be shown how the 
incident wave is generated on the connective 
boundary and limited in total field region. 

In Fig. 1, a plane wave 0 0expi iE E j k r  


   

0 )j wt propagates in the direction of ik . The 
incidence direction ik  makes angles i  relative to 
the z -axis, and i  relative to the x-axis. The unit 
vector 0E


 is the unit polarization direction. The 
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polarization direction is rotated counter clockwise 
by the angle  (i.e. the polarization angle) from 
e  within the incidence plane. The incident wave 
is computed using the 1-D FDTD method [14] 
with the same spatial step x y z       and 
temporal step t  as the 3-D FDTD method 
mentioned above. Where, x , y , z  are the 
spatial increments in the x -, y - and z -directions. 
To ensure the stability and accuracy of the FDTD 
algorithm, 0.5t c   is presented to satisfy the 
Courant stability criterion in [15] and c  is the 
light speed propagation in the vacuum.  

Let ,
n
x iE , ,

n
y iE , ,

n
x iH  and ,

n
y iH be the incident 

electrical and magnetic fields at the connective 
boundary. The finite- difference equations on the 
connective boundary should then be updated as:    
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In numerical simulations, a finite-length rough 

surface must be used to model scattering from the 
infinite surface. When a plane wave strikes the 
finite-length rough surface, boundary reflection 

occurs. One way of minimizing reflection is to 
construct an incident wave that tapers to very 
small values at the surface edges. Reflection still 
occurs and cannot be completely eliminated, but it 
makes negligible contributions to the scattered 
field. To solve this problem, Fung et al. put 
forward the Gaussian window function [16] to 
guard against the truncation effect, and the 
Gaussian window function is written as 

     
2

2 2
0 0

cos
, exp iG x y x x y y

T
               

(15)  

where 0x  and 0y  are the spatial coordinates at the 
center of the connective boundary, T  is a constant 
which determines the width of the window 
function, cos 2.6i mT   and m  is the minimum 
distance from the center  0, 0x y  to the edge 
surface. 

D. Output Boundary 
The near fields for the rough surface can be 

obtained on the basis of theory described above. 
As indicated in [14], a way to obtain the far field is 
to do a near-to-far field transformation, which is 
based on the surface equivalence theorem. The 
transform formula for the output boundary is 
expressed as  
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   (17) 

where 0k  is the incident wave number (i.e., 

0 ik k ). r  is the distance from the origin of the
xyz   coordinate to any point at infinity and 0z  is 
the wave impedance in free space. s  represents 
the scattered azimuthal angle, and s  is the 
scattered angle. The terms xf , yf , mxf , and myf  are 
related to equivalent surface electric and magnetic 
currents [14]. In the paper, we choose the incident 
plane xoz (see Fig. 1)as the reference plane. Thus, 
the horizontal polarization wave is incidence on a 
2-D rough surface when the incident electric field 

iE  is in the plane xoz (i.e. o0  ). Otherwise, the 
vertical polarization wave is considered (i.e.
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o90  ). The bistatic scattering coefficient [17] in 
the far zone is shown as  

22
2 2

o
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r r
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III. NUMERICAL RESULTS AND 
DISCUSSIONS  

In this section, the numerical results of basic 
scattering from a 2-D two-layered rough surface 
for different conditions are discussed in detail. For 
convenience, some parameters describing the 
rough surface are measured in wave length , and

25.6 25.6S    . The spatial increment is taken 
as 10.x y z         The PML 

 
(a) 

 
(b) 

 
Fig. 3.  Comparison of the two different methods 
for the bistatic scattering from 2-D single-layered 
rough surface, o20i   (a) PEC  (b) dielectric.  
thickness is 5 .  

The randomly rough surface is created by 10 
Monte Carlo realizations and it is assumed that the 
horizontal incident wave is considered (i.e., o0 
). The incident azimuthal angle is o180i  , and 
incident frequency is 0.3GHz in the following 
results.  

In order to ensure the validity of FDTD 
algorithm presented in the paper, in Fig. 3 we first 
compute the angular distribution of bistatic 
scattering coefficient from 2-D PEC and dielectric 
single-layered rough surface using the Kirchhoff 
Approximation (KA) and FDTD, respectively. The 
incident angle is o20  and the bistatic HH polarized 
scattering is considered. The rms height and 
correlation length of rough surface is given by 

0.1h   and 1.0x yl l   . The relative dielectric 
constant of dielectric rough surface is 

(2.5,0.18)r  .The results from KA are obtained 
by introducing the 2-D tapered incident wave [18] 
instead of the plane wave into the classical 
Kirchhoff approximation [19].  

   
(a) 

 
(b) 

Fig. 4. The angular distribution of bistatic 
scattering coefficient for the different roughness of 
upper interface   (a) o0i  ,  (b) o40i  . 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5.  Bistatic scattering coefficient from the 
two-layered lossless/ loss rough surface(a)HH 

o30i   (b)VH o30i   (a)HH o50i  (b)VH 
o50i  .  

It is obvious that the angular distribution of 
scattering coefficient for both the PEC (Fig. 3(a)) 
and dielectric (Fig. 3(b))  rough surface by FDTD 
is in good agreement with that obtained by KA 
except for the large scattering angles, which 
demonstrates the feasibility and applicability of 
FDTD algorithm. 
Figure 4 presents the angular distribution of 
bistatic scattering coefficient for the case of the 
upper interface is flat but the lower interface is 
rough (i.e., flat/rough,  2 2 20.2 ,  l l 1.3x yh     ), 
and for the case of both the two interfaces are 
rough (i.e., rough/rough, 1 0.1 ,h  1 1 l l 1.0 ,x y    

2 0.2 ,h  2 2l l 1.3x y   ). The thickness of upper 
medium layer is 2H   where the results for HH 
polarization are given for both the incident angle 

o0 (Fig. 4 (a)) and o40 (Fig. (b)). The relative 
dielectric constant of upper medium layer is

1 (3.7,0.13)  , and that of the lower medium 
layer is 2 (16.16,1.15)  [20]. It is shown that the 
bistatic scattering from a rough/rough surface is 
stronger than that of a flat/rough surface for all the 
scattering angles except for the specular direction. 
In the large scattered direction, the latter is 
relatively approach to the former. 

In Fig. 5, co-polarized (HH) and cross-polarized 
(VH) bistatic scattering coefficients from two-
layered lossless/loss rough surfaces (

1 1 10.1 ,  l l 1.0 ,x yh     2 0.2 ,h  2 2l l 1.3x y   ,
2H  ) are investigated for the different incident 

angles, where the dielectric constant of lossless 
rough surfaces is 1 3.7  , 2 16.16  , and that of 
loss rough surfaces is  1 3.7,0.13  , 2 16.16, 

1.15) . As the HH polarization (Fig. 5(a) and Fig. 
5(c)) is concerned, it is easily observed that the 
bistatic scattering coefficient from two-layered 
lossless rough surfaces is much greater than the 
result of two-layered loss rough surfaces for the 
scattered angles except for the specular direction. 
But for VH polarization (Fig.5 (b) and Fig. 5 (d)), 
the scattering from lossless layered rough surfaces 
is larger than that of loss rough surfaces over the 
whole scattered angles range. 

To further explore the important scattering 
characteristics of 2-D layered rough surfaces, the 
azimuthal variation of bistatic HH- and VH-
polarized scattering coefficients are investigated 
for different scattered angles in Fig. 6. The 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6. The azimuthal distribution of bistatic 
scattering coefficient from two-layered rough 
surfaces o20i  (a) o5s   (b) o15s  (c) 

o30s  (d) o45s  . 

parameters of rough surface are identical to the 
data in Fig. 5. The incident angle o20 is 
considered. It is shown that the angular 
distribution from HH-polarized scattering 
coefficients reaches a maximum in the 
neighborhood where the VH polarization is a 
minimum and vice versa in Fig.6.  In addition, it is 
observed that the azimuthal angular pattern of the 
scattered angle o0 is nearly symmetric for both HH 
polarization and VH polarization, but the 
minimum of HH polarization and the maximum of 
VH polarization begin to shift towards the forward 
direction ( o180s  ) for the other scattering 
angles. 
 

IV. CONCLUSIONS 
This paper presents a study of electromagnetic 

scattering from 2-D layered rough surfaces by 
using FDTD algorithm. At first, the basic theory of 
FDTD method for calculating the scattered field is 
developed, including the generation of incident 
wave, the UPML absorbing boundary conditions, 
and a transform from near- to far- field on the 
output boundary. Then the numerical results of` 
bistatic scattering coefficent versus scattered and 
azimuthal angle for different conditions are shown 
and analyzed in detail. Future investigation will 
include the electromagnetic scattering from 2-D 
layered rough surfaces with a large-scale rough 
surface and a large incident angle. 
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