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Abstract─ In this paper, the forces between 
current carrying planar spiral coils are calculated. 
In order to facilitate the calculation process, the 
coils have been replaced by concentric rings and 
using first and second order complete elliptic 
integrals, the forces between them have been 
calculated. The comparison of the calculations 
resulting from the replaced rings method and the 
direct method shows that the former is more 
effective in both simplicity and calculation time. 
To evaluate the precision of the calculations, 
planar spiral coils have been constructed and 
tested. The experimental results validate the 
results of the calculations. 
  
Index Terms─ Planar spiral coils, magnetic force, 
vector magnetic potential, concentric rings. 
 

I. INTRODUCTION 
Planar spiral coils are used extensively in 

different applications such as communications, 
power electronics, and casting industries [1-3]. In 
these systems, to have a high inductance and flat 
configuration, spiral windings are employed. In 
DC/DC converters, because of flatness and special 
configuration, planar spiral coils are a better 
replacement for the ordinary inductances in order 
to reduce the volume of the converter. To calculate 
the magnetic force between these coils, some 
methods have been reported in literature. In [2] 
these forces are obtained just by test. In [3] the 
finite difference method is employed to calculate 
the force between them; furthermore, in this 
reference to calculate the magnetic force, spiral 
coils are replaced by concentric rings, but there is 
no study and discussion on the precision of the 
method. In [4] the force between circular coaxial 
coils has been investigated. Recently, the above 

authors employed mesh-matrix method in order to 
calculate the force between spiral coils [5]. In this 
paper, using concentric rings instead of spiral 
coils, an effective and simple procedure is 
developed to calculate the magnetic force between 
these coils. Using the results obtained from the 
numerical solution of the direct calculation 
method, the precision of the proposed method is 
investigated and finally compared with 
experimental results. 
 

II. DIRECT CALCULATION METHOD 
Consider a system of two spiral coils as shown 

in Fig. 1. To calculate the magnetic force between 
them, we should first calculate the vector magnetic 
potential resulting from one of the coils in any 
given point like P (see Fig. 2). 

Vector magnetic potential of spiral coil 1 in 
any given point P is obtained by the following 
equation [6]: 
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where 1I  is the current of the coil, ld  is the 
longitudinal differential component, and 1R  is the 
distance between this differential component and 
point P. 

The coordinates marked by prime are related 
to the source. With suitable substitutions for ld  , 
the following equation for vector magnetic 
potential is obtained: 
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Fig. 1. The two spiral coils in z distance of each 
other. 

 
Fig. 2. Calculation of the vector magnetic potential 
of spiral coils in any given point like P. 

 
To calculate the integral in (2), one of the 

integral variables must be replaced by another one 
according to the relations between them. The 
variables  and r   have a linear relation; 
consequently, we can write [7, 8]: 

rK  1                                 (3) 
where 1K  is a constant coefficient that is called 
"compression factor"  of coil 1.   
 
 

This factor depends on the diameter of the wire 
used and the structure of the coil and determines 
its compression. Having the vector magnetic 
potential, the magnetic field is calculated using the 
following equation [6]: 

AB                                    (4) 
The force acted on the coil 2 is [9]: 
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In the above equation, 2dl  is longitudinal 

differential component on coil 2. Substituting 
proper expression for 2dl  and employing (4) in (5) 
and doing some mathematical calculations, we get: 

zzyyxx fafafaF 21               (6) 
where xf , yf  and zf  are the components of the 
force in directions x, y and z, respectively, and are 
equal to (7)-(9) at the bottom of the page. 

In equations (7)-(9), the parameters 1r  and 1r  
are the inner radii of coil 1 and 2, respectively, and 

2r  and 2r  are the outer radii of coils 1 and 2, 
respectively. Also, the following equation has 
been used [7, 8]: 

rK2                              (10) 
where 2K  is compression factor of coil 2 
determined with regard to the compression of the 
coil and the diameter of the wire used in it. 
 

III. CONCENTRIC RINGS METHOD 
In the previous section, it was observed that to 

obtain the force between spiral coils, using the 
analytical method is slightly complex and time-
consuming. Furthermore, the obtained integrands 
are not smooth functions, and we have some 
difficulties in the calculation of their integrals. 
Especially when the coils are compressively 
wounded, the problem is more acute.   
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To overcome this problem, accepting some errors, 
we can replace the spiral coils with concentric 
rings and then calculate the forces between them 
[7]. For this purpose, we first calculate the force 
between two concentric current carrying rings. 
Suppose rings 1 and 2 with radiuses a  and b  
while carrying currents 1I  and 2I , respectively 
(see Fig. 3). To obtain the force exerted on the 
upper ring from the lower ring, we first calculate 
the magnetic field of lower ring in any given point 
P. To calculate the magnetic field, we use the 
vector magnetic potential concept. The vector 
magnetic potential of ring 1 in any point P  on 
ring 2, using (1), is equal to (Fig. 4): 

),(   RfaA                             (11) 
in which the function ( , )f R   is as follows: 
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In the above equation, a  is the radius of ring 1, 
0  is the permeability of vacuum, 1I  is the 

current of ring 1, and R  is the distance between 
the origin and the field point P (Fig. 4). By 
obtaining the vector magnetic potential, magnetic 
field is calculated using (4). Substituting (11) and 
(12) in (4) and doing some mathematical 
calculations, we get: 
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where 1g  and 2g  are: 
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The force exerted on ring 2 from ring 1 is 
calculated using (5). Applying (13)-(15) to (5) and 
also substituting an appropriate expression for 2dl  
and doing some simple mathematical calculations, 
the following equation for the force is obtained: 
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In the above equation,  b  is the radius of ring 2 
and z  is the axial distance between the two rings.  

 
Fig. 3. Two concentric current carrying rings. 

 

 
Fig. 4. Determination of vector potential of a 
current carrying ring with radius a  in any given 
point P. 

 

 
 Fig. 5. Two coils with concentric rings. 
 
The force obtained in (16) has no analytical 
solution, so we can use numerical integration 
methods to solve it. Changing the integral variable 
as  2)2/3( in (16), the following equation 
for the force is obtained: 
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where k is a constant parameter and is equal to: 
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and )(kK  and  )(kE  are the first and the second 
order elliptic integrals, respectively, with the 
following definitions: 
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Now, having the force between the two rings, 
we can calculate the force between the two spiral 
coils after replacing them by concentric rings (Fig. 
5). The magnetic force between the two coils (the 
force exerted on coil 2 from coil 1 in Fig. 5) will 
be as follows: 
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where 1n  and 2n  are the number of turns of coil 1 
and 2, respectively, and ),(21 ijf  is equal to: 
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In the above equation, z is the distance between 
the two coils, and the parameters ia , jb  and 'k  
are defined as: 
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where 0a  and 0b  are the inner radius of coils 1 
and 2 and 1s  and 2s  are the distance between two 
neighboring turns in coils 1 and 2, respectively. If 

the coils are wound compressively, then 1s  and 2s  
must be replaced by the diameter of the wires used 
in coils 1 and 2, respectively. 

 
IV. CALCULATION RESULTS 

In Section II, the force between two spiral 
coils was analytically obtained (equation (6)). 
Suppose that the compression factors of the coils 
are high. In this case, the force values in the x and 
y directions are almost zero, and the component of 
the force in the z direction is non- zero [7] which 
is given by equation (9). The force in this relation 
is the force exerted on coil 2 from coil 1 as it is 
shown in Fig. 1. Although we use precise 
analytical relations to obtain the force in (9), its 
integral has no analytical solution, and numerical 
integration techniques must be used to solve it. 
The integrand of the equation (9) has some "semi-
poles" which depend on the value of the 
compression factors 1K  and 2K . The curve of the 
integrand versus variables r  and 'r  is shown in 
Fig. 6 for different values of r  and 'r  from 0 to 1. 
As seen in the figure, by increasing the values of 
r  and 'r  from zero, the value of the integrand 
produces some sharp peaks (the semi-poles 
points). It is clear that integration of these surfaces 
is much more difficult because in order to obtain 
higher precisions, one needs to increase the 
number of iterations of numerical integration 
intensively which, in turn, requires much longer 
computational time to solve such a problem. 

Now we compare the results of direct 
calculation of the force using equation (9) with 
that of the replaced concentric rings method. To 
calculate the integral in equation (9), we used 
recursive adaptive Simpson Quadrature method. In 
the replaced concentric rings method, the radius of 
each ring is assumed to be the average of the inner 
and the outer radii of each turn of spiral coils. In 
Tables 1 and 2 the results of calculation of the 
force using two methods for different values of 
turn number and different center to center distance 
of coils are compared. In these tables, the current 
in both coils is 20 Amperes, the diameter of the 
wires is 2 mm, and the compression factor for both 
coils is assumed to be d/2 , where d is the 
diameter of the wires in both coils; meaning that 
for each turn of coils or for change of 2  Radians 
in the value of variable   in cylindrical 
coordinates, the change in the value of variable r 
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(the radial growth of coils) is equal to diameter of 
the wires used in the coils. In Table 1, it is 
assumed that the coils start to grow from point (0, 
0). Comparing the results of the two methods in 
this table, it is seen that for the fewer number of 

 
Fig. 6. The integrand in force equation for 500 
turns in each coil. 

 

 
Fig. 7. Measurement of the magnetic force 
between the two spiral coils. 
 
turns the error is high, but by increasing the 
number of turns, the error gradually decreases, and 
when the turn number approaches to 100, the error 
becomes zero. In Tables 1 and 2 the precision of 
the calculations is adjusted according to the 
numerical value of the results. For instance, for the 
first column of Table 1 the calculated numbers are 
in the range of 1310 (their minimum value). To 
compare the calculation time in the two 

approaches, it suffices to mention that the required 
calculation time using the adaptive Simpson 
method for 100 turns in Table 1 for precision of 

410  is 28000 times more than that of using 
replaced concentric rings method. As seen in the 
table, the results precisely coincide with each 
other. Another interesting point about Table 1 is 
that by increasing the distance between the two 
coils, the calculation error increases showing that 
in large distances, the replaced concentric rings 
method does not present a proper approximation 
of the force. 

In Table 2, the comparison between the two 
methods is made for the case in which the inner 
radius of the two coils are equal to 2.5cm; in other 
words, the coils start to wind from cmr 5.2 . As 
seen from the results of the table, the errors in this 
case are less than the corresponding errors in 
Table 1. For example, the force error for 2 turn 
coils in distance of 8 cm reduced from 94.6% in 
Table 1 to 0.12% in Table 2. These fewer errors 
for lower turn numbers decrease expeditiously to 
zero by increasing the turn numbers.  

According to the results of Tables 1 and 2, 
generally for turn numbers higher than 10 turns in 
each coil, using the replaced concentric rings 
presents good approximations while having much 
simpler and faster calculations compared with that 
of the direct method and using (9). 

Now, suppose the case in which there is a 
smaller compression factor for the coils compared 
with the previous one, i.e. for each turn of coils or 
for change of 2  Radians in the value of variable
  in cylindrical coordinate, the change in the 
value of variable r is more than the diameter of the 
wires used in the coils. For example, suppose that 
the growth of r is equal to 6 mm; in this case, the 
compression factor for both coils will be: 

                
006.0
2

21


 KK . 

The results of the calculations of the force 
with the above mentioned conditions using the 
methods of direct and replaced rings are presented 
in Table 3. In this table, like the previous cases, 
the current of the coils is 20 Amperes. 

It is interesting to compare the results of 
Tables 1 and 3. In Table 3, the trend of increasing 
and decreasing of error with the increase of the 
distance between the two coils and the number of 
turns is the same as Table 1; but in this case, the  
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Table 1. Comparison of the force calculation methods between two spiral coils (inner radii and 
compression factor of the coils are 0 and 002.0/2 , respectively). 

 

Number of 
Turns or 

Rings Per 
Coil 

2 5 10 20 50 100 

Z=2cm 

Direct 
Method (N) 2.9854×10-6 2.3725×10-4 5.6356×10-3 7.1760×10-2 1.0079 5.4610 

Replaced 
Rings 

Method (N) 
1.3416×10-6 2.2745×10-4 5.6091×10-3 7.1713×10-2 1.0078 5.4610 

Error (%) 55.1 4.1 0.47 0.07 0.01 0 

Z=4cm 

Direct 
Method (N) 4.9389×10-7 2.3834×10-5 9.2665×10-4 2.2472×10-2 5.8029×10-1 4.0310 

Replaced 
Rings 

Method (N) 
9.0210×10-8 2.1251×10-5 9.1686×10-4 2.2445×10-2 5.8024×10-1 4.0310 

Error (%) 81.7 10.8 1.1 0.12 0.01 0 

Z=8 cm 

Direct 
Method (N) 1.0599×10-7 2.1389×10-6 8.8644×10-5 3.6843×10-3 2.1795×10-1 2.3208 

Replaced 
Rings 

Method (N) 
5.7461×10-9 1.5053×10-6 8.6061×10-5 3.6745×10-3 2.1791×10-1 2.3208 

Error (%) 94.6 29.6 2.9 0.27 0.02 0 
* Precision of the calculations in numerical integration for rings of 2 to 100 turns are 

5791013 105.0,105.0,105.0,105.0,105.0    and 4105.0  , respectively. 
 

Table 2. Comparison of the force calculation methods between two spiral coils (inner radii and 
compression factor of the coils are 2.5cm and 002.0/2 , respectively). 

 
Number of 
Turns or 

Rings Per 
Coil 

2 5 10 20 50 100 

Z=2cm 

Direct 
Method (N) 1.8844×10-3 1.3230×10-2 5.8839×10-2 2.5524×10-1 1.7033 7.0917 

Replaced 
Rings 

Method (N) 
1.8851×10-3 1.3234×10-2 5.8849×10-2 2.5526×10-1 1.7033 7.0917 

Error (%) -0.04 -0.03 -0.02 -0.01 0 0 

Z=4cm 

Direct 
Method (N) 5.1474×10-4 4.0012×10-3 2.0961×10-2 1.1654×10-1 1.0846 5.4020 

Replaced 
Rings 

Method (N) 
5.1465×10-4 4.0009×10-3 2.0961×10-2 1.1654×10-1 1.0846 5.4020 

Error (%) +0.02 +0.01 0.0 0.0 0 0 

Z=8 cm 

Direct 
Method (N) 7.6578×10-5 6.6545×10-4 4.1678×10-3 3.1257×10-2 4.8080×10-1 3.2851 

Replaced 
Rings 

Method (N) 
7.6487×10-5 6.6492×10-4 4.1660×10-3 3.1252×10-2 4.8079×10-1 3.2851 

Error (%) +0.12 +0.08 +0.04 +0.02 +0.002 0 
* Precision of the calculations in numerical integration for rings of 2 to 100 turns are 

56789 105.0,105.0,105.0,105.0,105.0    and 4105.0  , respectively. 
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Table 3. Comparison of the force calculation methods between two spiral coils (inner radii and 
compression factor of the coils are 0 and 006.0/2 , respectively). 

 
Number of 

Turns or Rings 
Per Coil 

2 5 10 20 50 100 

Z=2cm 

Direct Method 
(N) 7.3291×10-5 3.0192×10-3 2.7852×10-2 1.7814×10-1 1.5234 6.8511 

Replaced Rings 
Method (N) 5.9885×10-5 2.9807×10-3 2.7794×10-2 1.7806×10-1 1.5234 6.8511 

Error (%) 18.3 1.3 0.2 0.05 0.0 0 

Z=4cm 

Direct Method 
(N) 9.7945×10-6 7.3240×10-4 1.1940×10-2 1.1105×10-1 1.2302 6.0918 

Replaced Rings 
Method (N) 6.0653×10-6 7.1382×10-4 1.1902×10-2 1.1100×10-1 1.2301 6.0918 

Error (%) 38.1 2.5 0.3 0.05 0.01 0 

Z=8 cm 

Direct Method 
(N) 1.3593×10-6 9.5316×10-5 2.8855×10-3 4.7627×10-2 8.3326×10-1 4.9196 

Replaced Rings 
Method (N) 4.4275×10-7 8.9553×10-5 2.8669×10-3 4.7589×10-2 8.3320×10-1 4.9196 

Error (%) 67.4 6.1 0.65 0.08 0.01 0 
* Precision of the calculations in numerical integration for rings of 2 to 100 turns are  

567911 105.0,105.0,105.0,105.0,105.0    and 4105.0  , respectively. 
 
Table 4. Characteristics of the constructed spiral coils 

Diameter of 
wire used (mm) 

Inner 
radius(cm) 

Number 
of turns  

1.6 2.15 54 Coil 1 
1.6 2.0 55 Coil 2 

  
Table 5.  Experimental results and their comparison with calculation results of the replaced rings method 

 Current of Coils (A) 4.8 5.4 7.3 10.6 14.1 

Z=2 cm Measured Force (N) 0.1079 0.1373 0.2453 0.5199 0.9123 
Calculated Force (N) 0.1067 0.1351 0.2469 0.5206 0.9211 

Z=4 cm Measured Force (N) 0.0687 0.0785 0.1472 0.3139 0.5592 
Calculated Force (N) 0.0640 0.0810 0.1480 0.3119 0.5520 

Z=8 cm Measured Force (N) 0.0196 0.0294 0.0589 0.1275 0.2158 
Calculated Force (N) 0.0256 0.0324 0.0592 0.1248 0.2208 

 
calculated percentage of relative error of the 
force is lower than the corresponding values in 
Table 1. At first, it seemed that by decreasing 
the compression factor the calculation error 
increases, but this assumption is not true because 
by decreasing the compression factor, the 
relative error of calculations with replaced rings 
method decreases. This is also true for smaller 
compression factors [10]. 

 
V. THE EXPERIMENTAL RESULTS 

     In order to evaluate the precision of the 
replaced concentric rings method in calculating 
the force between coils, two coils with different  

 
radii were precisely constructed in the laboratory 
with the characteristics presented in Table 4.  

To precisely measure the repelling and attracting 
forces between the coils, a test as illustrated in Fig. 
7, is arranged. In this figure, one of the coils is 
placed on a fiber board isolator whose permeability 
is the same as air, and the other coil is connected to a 
digital force meter via four pieces of string and a 
fiber board isolator. So, by applying current to the 
circuit of the two coils, the force exerted on the 
higher coil, which is equal to the force on the lower 
coil, is precisely measured.  

In Table 5, the calculation and experimental 
results for different distances are presented. To 
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obtain the calculation results of this table, due to 
the large number of turns and inner radii for the 
coils, the replaced concentric rings method is 
employed. Regarding the results and the 
explanations of the previous section, using this 
method in this case causes no significant error. 
As Table 5 shows, the results of the force 
measurement are in good accordance with the 
results of the calculations, validating the 
precision of the proposed method. 

 
VI. CONCLUSION 

In this paper, the force between spiral coils 
is calculated using two methods: direct method 
and replaced concentric rings method. In the 
direct method, we face integrals with no 
analytical solutions. The numerical solution of 
these integrals, due to the fact that the integrands 
are not smooth, is difficult and time-consuming. 
To overcome this problem, we employed 
replaced concentric rings method which has 
simpler calculations and reduces the calculation 
time. Due to the obtained results, the calculation 
error of the replaced rings method for number of 
turns more than 10 is negligible, and the method 
is effective. These errors are reduced by 
increasing the inner radius of spiral coils, which 
is the case of many practical applications, and 
are acceptable values in lower turn numbers, too. 
According to the measurements done on the 
constructed coils, the calculation results are in 
good agreement with the experimental results, 
validating the effectiveness of the replaced rings 
method. 
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