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Abstract─ In this paper, a new subspace-based 
method for high-resolution direction-of-arrival 
(DOA) estimation of multiple plane waves in a 
noisy environment is proposed. This method 
called Iterative-Subspace-Decomposition (ISD) 
involves an iterative decomposition into two 
blocks of the matrices corresponding to the noise 
and the source subspaces. The proposed algorithm 
provides enhanced estimation performance of the 
DOA. It also significantly improves the resolution 
capability with respect to existing algorithms. The 
method can be applied to low signal-to-noise ratio 
(SNR) environment and is suitable for arrays with 
arbitrary sensor geometries, including linear 
arrays. Several numerical simulations are 
presented to assess the proposed method enhanced 
performance in comparison to that obtained by 
some classical algorithms. This comparative study 
has shown that the ISD leads to a significant 
reduction in the Root Mean Square Errors (RMSE) 
and resolution rate capabilities of the DOA 
estimates. As though, it is shown that the ISD 
method is superior in resolving closely spaced 
signals with a small number of snapshots and at 
low SNR. 
  
Index Terms─ Subspace-based methods, DOA 
estimation, iterative decomposition, high-
resolution capability, estimation performance, 
arbitrary sensor geometries, linear arrays.  
 

I. INTRODUCTION 
Direction of Arrival (DOA) estimation of 

narrowband wave fronts impinging on an array of 
sensors has long been of great interest in several 
applications [1]. Numerous techniques have been 
developed to determine the angle of arrival of 
signals incident on an antenna array [2]. These 
methods typically are based on the phase 
difference of the signal at adjacent elements in the 
antenna array since this phase difference is 
proportional to the angle of arrival of the incoming 
signal.  

In the literature, the classical subspace based 
methods have been investigates extensively [3]. 
Super-resolution techniques have also been 
developed that take advantage of the structure of 
the input data model. These methods, including 
MUSIC [4], ESPRIT [5] and SUMWE [6], fall 
into a class of algorithms known as subspace-
based techniques [7]. Nevertheless, the existing 
linear operation based methods, e.g., Propagator 
[8], find the signal or noise subspace from the 
array data by partitioning the array response 
matrix or exploiting the array geometry and its 
shift invariance property, and then estimate the 
directions of arrival (DOAs) of incident signals by 
the way similar to the classical MUSIC estimator. 
However, it is shown in [6] that the estimation 
accuracy of the linear operation based methods is 
generally poorer than the classical subspace based 
methods (e.g., MUSIC) from the statistical 
viewpoint. That’s why MUltiple SIgnal 
Classification (MUSIC) is a popular high-
resolution technique for estimating the DOA of 
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multiple plane waves in a noisy environment, 
using an array of M sensors [9]. The method 
involves eigendecomposition of the spectral 
covariance matrix  of the M-dimensional data 
vector to determine the noise and the source 
subspace. The matrix  is estimated from a finite 
number of samples of the data vector. For a given 
data size K, reduction of the signal-to-noise ratio 
(SNR) at the sensor array output causes an 
increase in the covariance matrix estimation error 
and a corresponding increase in the DOA 
estimation error [10]. The estimation errors may 
be reduced by increasing K, but requirements of 
temporal coherence and speed impose an upper 
limit on the permissible value of K.  

Inevitably, the performance of the MUSIC 
estimator suffers a progressive degradation as the 
SNR is reduced.  In the case of finite data samples, 
it cannot resolve adjacent sources with large 
power level differences between them. In this 
work, the possibility of using an Iterative-
Subspace-Decomposition (ISD) technique is 
explored to improve the performance of the 
MUSIC in low SNR environment. The ISD 
method is based on the invariance property of 
noise and source subspace after an iterative 
decomposition into two blocks. This method not 
only has a higher resolution than the MUSIC but 
also can resolve very weak sources in the vicinity 
of strong ones. The proposed algorithm can handle 
all array configurations and like the MUSIC 
method its DOA estimates are asymptotically 
exact, i.e., exact estimates are obtained 
asymptotically as the number of measurements 
goes to infinity irrespective of the SNR and 
angular separations of the sources [11]. 

The paper is organized as follows. First, the 
signal and noise model is presented and DOA 
estimation problem is formulated. Next, the new 
method is presented and its iterative process is 
investigated. Simulation results for comparison 
between the proposed algorithm and the MUSIC 
method are given in Section 4, followed by a 
summary of the main conclusions arising from this 
work. 
 

II. DATA MODEL AND MUSIC 
ALGORITHM 

Consider a Uniform Linear Array (ULA) of M 
sensors with intersensor spacing d. If plane waves 

from N narrowband far field sources, with the 
same known center frequency f0, arrive at the array 
at angles 1, 2, …, N, with respect to the array 
normal, the complex received signal of the mth 
sensor at time t, can be written as 

 

        

        
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where  im θ is the propagation delay between a 
reference point and the mth sensor for the ith 
wavefront impinging on the array from direction 

iθ as shown in Fig. 1,  im θa is the corresponding 
sensor element complex response (gain and phase) 
at frequency 0f , and  tbm  is additive noise at the 
mth sensor element.  

With the narrow band assumption, si(t) is the 
ith signal complex envelop representation which 
can be shown as 

 
        N,...,i,ttfjexptuts iii 12 0    (2) 

 
where  tui  and  ti  are slowly varying functions 
of time that define the amplitude and phase of ith 
signal, respectively. Slowly varying means 
    tutu ii  and     tt ii  for all possible 

propagation delays   between array sensors, and 
as a result of this, the effect of a time delay on 
received waveforms is simply a phase shift, i.e., 

 
      02 fjexptsts ii              (3) 

 
Using vector notation for the received signals 

of M sensors, the data model can be presented as 
 

     



N

i
ii tb)t(sθatr

1

                (4) 

where  
           T1 tr,...,trtr M ,       T1 tb,...,tbtb M ,  

      
    T0

101

2

2

iMiM
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       (5) 

N,...,i 1 . 
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and superscript T denotes transpose of a matrix. 
The 1M  vector  iθa  is known as array response 
or array steering vector for direction iθ . With 
defining the NM   matrix     Nθa,...,θaA 1  and 

1N  vector       T1 ts,...,tsts N , relation (4), can 
be written as 

 
     tbtsAtr  .                          (6) 

 
The problem of determining the DOAs can 

now be reduced to the problem of estimating the 
vector parameter  T1 Nθ,...,θθ   given K 
observations or snapshots   K

ttx 1 . In order to 
make the estimation problem tractable, some 
assumptions have to be made about the model (6). 
The following assumptions are common in the 
literature on DOA estimation: 

A1) The number of sensors M is larger than 
the number of emitting sources N, i.e., M > N. The 
number of sources N is assumed to be known. 

A2) The steering vectors  θa  is known for all 
θ  and the array is configured in such a way that 
the matrix A has full column rank, i.e., rank (A) = 
N. This also implies the source directions to be 
different in space, i.e., ji θθ  . 

A3) The additive noise at each sensor is a 
zero-mean stationary complex Gaussian random 
vector which is both temporally and spatially 
white. The noise processes of different sensors are 
uncorrelated and with the covariance matrix 

 
     Mbb ItbtbE 2H  ,                   (7) 

 
where 2

b  is the noise power at each sensor and 
MI  is an MM   identity matrix. 

It is further assumed that the noise is 
uncorrelated with the N source signals. 

A4) the sources are uncorrelated zero mean 
stationary processes with the NN   diagonal 
covariance matrix  

 
      22

2
2
1

H
NS ,...,,diagtstsEP  ,      (8) 

 
where   22 tsE ii   denote the power (variance) 
of the ith source. 

From the above assumptions and (6), the 
MM   covariance matrix of received data can be 

expressed as 
 

     bsMbS IAAPtrtrE  2HH   (9) 
where HAAPSs   denote the signal covariance 
matrix. 

 

 
 

Fig. 1. Geometry of the array for DOA estimation. 
 
Let   be eigen decomposed as 
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where  2222

2
22

1 bNbb ,....,,diag  , 
Us and Vb are the signal subspace and noise 

subspace eigen vector matrices, respectively. It 
can be shown that AHVb=0. Or equivalently,  

 
    0VV H

bb
H θaθa                     (11) 

 
at the true DOAs. 

In practice, the data covariance matrix  is not 
available but a maximum likelihood estimate ̂  
based on a finite number (K) of data samples can 
be obtained as 

 

   



K

k
kk trtr

K
ˆ

1

H1                     12) 

 
where ,kTt sk   sT  is the sampling period and 
estimation of DOA of sources is based on this 
sample covariance matrix. 

478CHANGUEL, CHANGUEL, GHARSALLAH: ESTIMATING THE DIRECTION-OF-ARRIVAL BY ITERATIVE SUBSPACE-BASED METHOD



If ̂  is eigen decomposed as in (10), one 
would arrive at the estimate of the noise subspace 
eigen vector matrix as bV̂ . Since bV̂  is only an 
estimate, the left-hand side of (11), would be 
minimum, and not zero, at the true DOAs if Vb is 
replaced by bV̂ . Spectral MUSIC utilizes this fact, 
so that the ambiguity function, 

 

 
   












θaˆˆθa
θFMUSIC H

bb
H VV

1           (13) 

 
peaks at the true DOA, whereas Root MUSIC 
simply roots the polynomial    θaˆˆθa H

bb
H VV  to 

find the DOA. 
 

III. PROPOSED DOA ESTIMATION 
ALGORITHM: Iterative-Subspace-

Decomposition (ISD) Method 
A set of basis vectors that span the signal 

subspace S are the eigenvectors corresponding to 
the N largest eigenvalues of the measurement 
covariance matrix . This follows from the 
definition of the eigenvalues and eigenvectors of  
given by 

 
,M,...,,m,vv mmm 21           (14) 

 
where M...  21  are the eigenvalues (in 
decreasing order) of  and iv are the corresponding 
eigenvectors. Inserting for  into (14), gives 

 
  ,vv mbmms

2                    (15) 
 

which is the definition of the eigenvalues and the 
eigenvectors of the signal covariance matrix 

HAPAs  , where  2
bm   is the mth eigenvalue 

and mv  is the mth eigenvector. 
The MM   matrix s is by construction 

positive semidefinite with rank equal to N (under 
the assumption that the signals are not fully 
correlated). This means that s has N positive, 
nonzero eigenvalues and M-N eigenvalues that are 
equal to zero. The eigenvalues of  are then 

2
121 bMNN ......    and the 

eigenvectors of  corresponding to the N largest 
eigenvalues are the same as the eigenvectors of s 

that correspond to the only nonzero eigenvalues. 
These eigenvectors span the same subspace as s 
and hence also A. The signal subspace can then be 
written as: 

 
   ,spanAspanS sU                (16) 

 
where  Nv,...,v,v 21sU  . Similarly, the noise 
subspace is 

 
 ,spanS bV                      (17) 

 
where  .v,...,v,v MNN 21bV   For an infinite 
number of snapshots K, the sample covariance 
matrix is equal to the measurement covariance 
matrix, that is, ,ˆ Mlim  and the signal 
subspace can be found as described above.  

In practice, however, there is a finite amount 
of data available, which implies that ̂ . This 
means that the exact signal subspace cannot be 
found. Instead, estimates of the signal and noise 
subspaces can be made from the eigenvectors of 

,̂  i.e.,  sÛspanŜ   and  bV̂spanŜ  , where 
 Nv̂,...,v̂,v̂ˆ

21sU  ,  MNN v̂,...,v̂,v̂ˆ
21bV  , and 

mv̂ , M,...,,m 21  are the eigenvectors 
corresponding to the eigenvalues of ̂ , which are 

M
ˆ...ˆˆ  21 . 

 
A. Signal and Noise Subspace 

The MM   sample covariance matrix ̂  given 
in (12), is a positive definite matrix.  We denote its 
eigenvalues (in decreasing order) and their 
corresponding eigenvectors by m̂  and mv̂ , i.e., 

 





M

m

H
mmm v̂v̂ˆˆ

1

HVDV            (18) 

 
where  Mv̂,...,v̂,v̂ 21V   and  M

ˆ,...,ˆ,ˆdiag  21D  
Establishing of the signal and noise subspace is 

obtained using the following observations;  Because 
it is assumed that NM  , the MM   eigenvalues 
matrix D and the MM   eigenvectors matrix V can 
divided into four parts as follows: 
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 
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The submatrices V11 and V21 define the signal 

subspace matrix VS. The submatrices V12 and V22 
define the noise subspace matrix VB. VS and VB are 
the same signal and noise subspace defined by the 
MUSIC method. The two blocks D2 and D3 for the 
diagonal matrix D are two null matrices. 

Assume first that there is no noise present. The 
spectral covariance matrix  can then be written 

 

 

H
SS

H
B

H
S

BS
H

EVV
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00
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where E is the NN   diagonal matrix which 
contain the eigenvalues (in decreasing order) of the 
signal covariance matrix s . 

Now assume that noise is included in the 
model. The spectral covariance matrix  can then 
be written 

 

   
    HBS

22
BS

H
B

2
B

H
S

2
S

H
SS

2H
SS

VVEVV

VVVVEVV

EVV

NMbNb

NMbNb

Mbbs

I,Idiag

II

I











.  (22) 

 
Thus, the NM   dimensional subspace 

spanned by the NM   noise eigenvectors may be 
justifiably referred to as the noise subspace. The N 
dimensional subspace spanned by the incident 
signal mode vectors may also be referred to as the 
signal subspace.  Both subspaces are disjoint. 

By including the partitioning of the matrix V 
and D, a new covariance matrix   is defined as 


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     HBS41BS VVD,DVV diag .                     (23) 

 
Add and leave out the noise covariance matrix 

b , relation (23), can be written as 
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H
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H
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By identification with (22), the signal 

covariance matrix can be written as: 
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and the noise covariance matrix can be written as 
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NMbNb II  2
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'
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2
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'
1 DDandEDD . 
 

The parameters QS1, QS2, QS3 and QS4 are, 
respectively, NN  ,  NMN  ,   NNM   
and    NMNM   dimensional submatrices. 
QB1, QB2, QB3 and QB4 are, respectively, NN  , 

 NMN  ,   NNM   and    NMNM   
dimensional submatrices. 

 Lastly, the noise subspace RB and the signal 
subspace RS is obtained by a linear operation of the 
matrix formed from the noise and signal covariance 
matrix: 

 
B. Iterative Subspace-Decomposition-Signal 
(ISDS) Method 

From the signal covariance matrix (25), GS is 
defined to be the  NMN   linear operator 
source. The rows of QS3 can be expressed as a linear 
combination of linearly independents rows of QS1; 
equivalently, there is a  NMN   linear operator 
GS between QS1 and QS3 

 
11

H
S21S1

H
SS3 VGVQGQ  .        (28) 

 
Then it follows from (28), that 

       AspanspanA NNM   Bs
H
Bs Ror0R  
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and 
   Aspanspan SsR ,                 (29) 

 

where 
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

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NMI

S
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G
R  and 








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S
Ss G

R NI
 are the 

noise and signal subspace matrices, respectively. 
Because the  NMM   matrix RBs has a full rank 
of  NM  , the columns of RBs form the basis for 
the null space    HA  of  HA , and clearly, the 
orthogonal projector onto this noise subspace is 
given by 

  H
Bs

1
Bs

H
BsBsR RRRR

Bs


 , which implies that 

 
 
Ni

a M

,...,1

for0 i1RBs



            (30) 

 
where 
 
         T00 1221 θMfjexp,...,θfjexp,θa    

 
and 10 M  is an 1M  null vector. Evidently, the 
directions can be estimated based on the orthogonal 
property (30). 

 
C. Iterative Process 

The common assumption used for the following 
iterations is that the noise subspace matrix RB (i.e., 
RBs or RBb) has a full rank of  NM  . Because it is 
assumed that NM  , the  NMM   noise 
subspace matrix RBI can be divided, at the Ith 
iteration, into two parts as follows: 

 

 N

NM 










I

I
B Z

W
R

I
                   (31) 

 
where RBI and WI are two submatrices with full 
rank, the row of ZI can be expressed as a linear 
combination of linearly independent rows of WI; 
equivalently there is a  NMN   linear operator 
GI+1 at the (I+1)th iteration, between WI and ZI 

II1I ZWG  .                            (32) 
 
Then it follows from (34), that 
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and signal subspace matrices at the (I+1)th iteration, 
respectively.  

Thus, a continuation of iterative decomposition 
of the new noise subspace matrix enables us to 
reduce the contribution of the noise and 
consequently to increase the signal-to-noise ratio, 
by keeping the information useful of the signal to 
be detected. The ISD spectrum, at the Ith iteration, 
can be expressed as: 
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G
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M NI 
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  
 

                       (35) 

The matrix H
BB II

RR  is a projection matrix onto 
the noise subspace. For steering vectors that are 
orthogonal to the noise subspace, the denominator 
of (34), will become very small, and thus the peaks 
will occur in  I

ISDF  corresponding to the angle of 
arrival of the signal.  

 
IV. SIMULATION RESULT 

In this section, the estimation accuracies of the 
proposed method and the classical MUSIC 
technique are compared for the problem of DOA 
estimation. Some numerical examples are 
investigated to illustrate the performance of the 
proposed method more explicitly. The array herein 
is assumed to be a ULA composed of 5 isotropic 
sensors, whose spacing equal half-wavelength. The 
number of signals is assumed to be known a priori. 
The simulation results include probabilities rate of 
resolving the two sources and root mean squared 
errors (RMSE’s) of estimated DOAs. In all the 
simulations of this paper successful simulations are 
those that show two distinct peaks. 

 
A. RMSE of Estimated DOA 

Suppose that the ULA receives two 
uncorrelated narrowband signals with equal power. 
We make 200 Monte Carlo (Realizations) runs for 
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each experiment to compute the Root-Mean-
Squared Errors (RMSE’s) of estimated DOAs. The 
true DOAs are given by {88°, 93°}. The 
background noise is assumed to be a stationary 
Gaussian white random process with zero mean. 
The RMSE’s of estimated DOAs versus SNR are 
shown in Fig. 2, where the number of sensors is 5 
and the number of snapshots is 100. The Propagator 
method is also plotted for comparison. 

 
Fig. 2. RMSE’s of estimated DOAs versus SNR. 
DOAs of signal 1 to 2 are 88° and 93°. The number 
of snapshots and the number of sensors are equal to 
100 and 5, respectively. 

 
Fig. 3. RMSE’s of estimated DOAs versus 
difference of DOAs between the two sources. The 
number of snapshots, SNR and the number of 
sensors are equal to 100, 12 dB and 5, respectively. 

 
It is demonstrated in Fig. 2 that the ISD 

estimator provides the comparable estimation 
accuracy with the MUSIC and Propagator methods 
when SNR is greater than 10dB, and yields the 

more estimation accuracy than the latter as 
SNR  10 dB. It should be noted that the RMSE for 
the proposed method is higher than the classical 
MUSIC and Propagator methods over the range of 
SNR that we simulated, especially in the case of 
low SNR (SNR < 5 dB), the proposed method 
surpasses the MUSIC estimator. The RMSE’s of the 
two estimators (MUSIC and Propagator) approach 
to the ISD as SNR becomes high. 

The RMSE of the DOA estimation error 
obtained by ISD, MUSIC and Propagator methods 
is plotted versus difference of DOAs between the 
two sources in Fig. 3. Another example is to 
demonstrate the superiority of the ISD method over 
the other method. 

It is clearly seen that the ISD method has high-
resolution capability. 

 
B. Resolution Rate Capabilities 

Let us assume that the number N of mobile 
users is 2 and each sample covariance matrix is 
estimated from 100 snapshots in the simulation.  

 
Fig. 4. Resolution rate capabilities versus SNR and 
difference of DOAs between the two sources. The 
number of snapshots and the number of sensors are 
equal to 100 and 5, respectively. 

 
The two sources are considered resolved if the 

differences between the estimates and their 
respective true locations are both less than the 
separation between the sources, i.e., if 

 9383 1
ˆ  and  9888 2

ˆ . Throughout 
simulations, the powers of the sources are assumed 
equal. 
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The resolving rate capabilities obtained by the 
proposed ISD method versus SNR and difference of 
DOAs between the two sources are plotted in Fig. 
4, where the number of snapshots and the number 
of sensors are equal to 100 and 5, respectively. 
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Fig. 5. Resolution rate capabilities, performance 
comparisons of the proposed and classical methods, 
(a) Resolution rate capabilities versus SNR. DOAs 
of signal 1 to 2 are 88° and 93°. The number of 
snapshots and the number of sensors are 100 and 5, 
respectively, (b) Resolution rate capabilities versus 
difference of DOAs between the two sources. The 
number of snapshots, SNR and the number of 
sensors are equal to 100, 12 dB and 5 respectively. 

 
When the two sources are uncorrelated, the 

results are displayed in Fig. 5. Figure 5(a) shows 
that the resolution capabilities of the proposed and 
the classical MUSIC methods are practically the 
same. The resolution performance of the Propagator 
method is also included for comparison. It can be 
verified from Fig. 5(a) that to have a resolution rate 

more than 90 %, the SNR of ISD, MUSIC and 
Propagator method must be higher than -5 dB, 0 dB 
and 5 dB, respectively. 

 

 
(a) 

 
(b) 

Fig. 6. Spectrum magnitude of proposed method 
and MUSIC versus DOA of sources, (a) Spectrum 
magnitude of proposed ISD method (for Iteration: 
I=1 and I=2) and MUSIC. DOAs of signal 1 to 2 
are 88° and 93°. The number of snapshots, SNR 
and the number of sensors are equal to 100, -5 dB 
and 5, respectively, (b) Spectrum magnitude of 
proposed ISD method (for Iteration: I=1 and I=2) 
and MUSIC. DOAs of signal 1 to 2 are 88° and 93°, 
respectively. The number of snapshots, SNR and 
the number of sensors are equal to 100, 5 dB and 5 
respectively. 

As illustrated by Fig. 5(b) that though the 
classical MUSIC and Propagator are unable to 
resolve the sources when the difference of DOAs 
between the sources becomes less then 3° and 5° 
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respectively.  The proposed ISD method can, 
however, estimate the DOAs of the sources more 
accurately when the difference of DOAs between 
the sources becomes less then 2°. 

Figures 5 and 4 shows higher resolution 
capabilities of proposed method in resolving closely 
spaced sources with large power differences at low 
SNR condition compared to MUSIC and 
Propagator. The same as the first experiment in all 
successful simulations of MUSIC method the 
proposed algorithm has also been successful with a 
much distinct peaks. 

To evaluate the dependence of the estimation 
accuracy of the proposed method on the number of 
iterations, the spectrum magnitude of estimated 
DOAs for the proposed ISD method for two 
different levels of iteration (I =1 and I = 2), is 
plotted in Fig. 6. The number of snapshots is 100, 
SNR changes at -5 dB in Fig. 6(a) and 5 dB in Fig. 
6(b), and the number of sensor is 5. MUSIC method 
is also included for comparison.  

The observation indicates that the proposed 
method can resolve the two DOAs at low SNR 
condition, unlike MUSIC method. This guarantees 
that the ISD approach can preserve high accuracy in 
the case of low-SNR. 

 
V. CONCLUSION 

The approach presented here for iterative 
subspace decomposition is very general and can be 
applied to all array configurations. The ISD method 
is interpretable in terms of the geometry of complex 
M spaces where in the eigen structure of the 
measured  matrix plays the central role. ISD 
method provides asymptotically unbiased estimates 
of a general set of signal parameters and its 
superiority over MUSIC accuracy bound. In 
geometric terms, ISD minimizes the distance from 
the steering vectors  θa  continuum to the signal 
subspace whereas maximum likelihood minimizes a 
weighted combination all component distances. 

The effect of ISD on the performance of 
MUSIC is analyzed by numerically evaluating and 
comparing: (1) the RMSE in the spectral covariance 
estimates obtained using finite data, and (2) the 
resolution rate capabilities of the DOA estimates. It 
is shown that ISD leads to a significant 
improvement in the performance of the MUSIC 
estimator.  

The array elements may be arranged in a 
regular or irregular pattern and may differ or be 
identical in directional characteristics 
(amplitude/phase) provided their polarization 
characteristics are all identical. The extension to 
include general polarizationally diverse antenna 
arrays will be more completely described in a future 
work. 
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