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Abstract –A surface integral equation method is used
to analyze time-harmonic electromagnetic scattering
by arbitrarily shaped three-dimensional DB objects
with sharp wedges. At the DB boundary surface, the
electric and magnetic flux densitiesD andB normal
to the surface are zero. The DB boundary conditions
are enforced by expanding the unknown equivalent
surface current densities with divergence-free loop ba-
sis functions. The equations are tested with Galerkin’s
method. The integral equation method is applied to
investige field behavior at sharp DB wedges and the
results are compared with the quasistatic solution in
order to determine the accuracy of numerical solution
at the sharp DB wedges.

Index Terms –DB boundary condition, field singular-
ity, integral equation method.

I. INTRODUCTION
In computational electromagnetics, boundary con-

ditions are often used as approximations of real mate-
rial interfaces. The perfect electric conductor (PEC)
boundary condition, which requires the vanishing of
the tangential component of the electric field at the
boundary surface, is probably the most well-known
and commonly used boundary condition. It is often
used as an approximation of conducting surfaces, for
example metallic surfaces at low frequencies. There
are also other boundary conditions that can be use-
ful in computional electromagnetics. Especially since
they can be used for modelling exotic material inter-
faces, e.g. PEMC [1]. In [2] the use of such canonical
surfaces in computational electromagnetics have been
summarized.

Electromagnetic soft surfaces [3], on which the
power does not propagate along the surface, have
many micro- and millimeterwave engineering appli-
cations. For example, they can be used for reducing
coupling between radiating elements in antenna arrays
or creating rotational symmetric radiation patterns for
horn antennas [4]. Anisotropic soft surfaces are gen-
erally fabricated by corrugated structures, which are
quite difficult to model by using standard numerical
softwares, because they contain a lot of fine details.
A relatively easy way to approximate isotropic soft
surfaces is to apply a DB boundary condition [5] in
calculations.

The DB boundary condition requires that the nor-
mal components of the electric and magnetic flux den-
sities vanish at the boundary. Analytical solutions
for objects involving the DB boundaries have been
studied in [5, 6, 7], and the integral-equation-method
based numerical solution for the scattering by DB ob-
jects was introduced in [8]. However, in most prac-
tial cases, a discretization of geometry leads to sharp
wedges and corners which can cause problems for nu-
merical calculations. At these sharp wedges and cor-
ners, fields can be singular. This fact gives motiva-
tion to analyze behavior of fields near DB wedges. It
is possible to solve field behavior near sharp wedges
by using quasistatic analysis, because the geometry
is independent of any scale parameter, and therefore,
the incident field can be analyzed by using static ap-
proach. A quasistatic solution is a well-known result
for PEC and dielectric wedges [9, 10]. In this paper,
we use a similar approach for analyzing field behavior
near the DB wedge. Also, we compare the quasistatic
solution with the integral-equation-method based nu-
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merical solution, and study the accuracy of the solu-
tion at the DB wedge.

II. DB BOUNDARY CONDITION
The DB boundary condition, introduced in [5], re-

quires that the normal components of the electric and
magnetic flux densitiesD,B vanish on the surface:

n ·D = 0, n ·B = 0. (1)

In linear, homogeneous, and isotropic medium, where
permittivity ǫ and permeabilityµ are constants, the
DB boundary condition (1) can be expressed as

n ·E = 0, n ·H = 0. (2)

A look at the Poynting vector illuminates the char-
acter of a DB boundary. The average propagating
power-density can be calculated from the real part of
the complex Poynting vector

< S(t) >=
1

2
ℜ{E ×H∗}, (3)

whereH∗ denotes the complex conjugate of the mag-
netic fieldH . At the DB boundary, the following can
be written:

n× (E×H∗) = E(n ·H)∗− (n ·E)H∗ = 0. (4)

Hence, the Poynting vector at the DB boundary has
only the normal component and the tangential com-
ponent vanishes. A soft surface has been defined [3]
as a surface where the power flux along the boundary
is zero. Therefore, the DB boundary is an isotropic
soft surface.

III. INTEGRAL EQUATIONS FOR DB
BOUNDARY

Consider an arbitrarily shaped three-dimensional
object with the DB boundary condition in a homoge-
neous background medium and an incident time har-
monic field (e−iωt). The surface of the object is de-
noted byS and the electromagnetic parameters of the
background medium areε andµ. Our goal is to solve
scattering of the electromagnetic waves by this obsta-
cle. We begin with the following representation of the
total time-harmonic electric and magnetic fields [11]

ΩE = −∇S(En) + iωµS(J)−K(M ) +Ep

ΩH = −∇S(Hn) + iωεS(M ) +K(J) +Hp,
(5)

whereΩ is the relative solid angle subtended by the
surface (Ω = 1/2 on smooth surfaces),En andHn

are the normal components of the fields at the surface,
J = n × H andM = −n × E are the equiva-
lent electric and magnetic surface current densities,
respectively,Ep andHp are the primary fields, and
n is the outer unit normal vector of the surface. The
surface integral operators are defined as

K(F )(r) = ∇× S(F )(r), (6)

S(F )(r) =

∫

S

G(r, r′)F (r′)dS(r), (7)

whereG is the free space Green’s function

G(r, r′) =
eik|r−r

′|

4π|r − r′| , (8)

r is the observation point,r′ is the source point, and
k = ω

√
εµ is the wavenumber of the background. Let

us define two surface integral operators as

Ft = −n× n×F
Fr = n×F .

(9)

Due to the DB boundary conditions (2),En and
Hn can be removed from (5). Normalizing the fields
in the following way (to get better balance between
the unknowns and the matrix elements, [12])

Ẽ =
√
εE, H̃ =

√
µH , (10)

so called T- equations is obtained by taking the tan-
gential components

[

H̃
p

t

Ẽ
p

t

]

=

[

−ikSt −1

2
Ir −Kt

1

2
Ir +Kt −ikSt

][

M̃

J̃

]

. (11)

Another set of equations, called N- equations, is ob-
tained by taking the cross product with the normal
vectorn

[

−Ẽp
r

H̃p
r

]

=

[

1

2
It −Kr ikSr

−ikSr
1

2
It −Kr

][

M̃

J̃

]

. (12)

The integral equation formulations for DB objects
contaning only T- or N- equations, however, suf-
fer from internal resonances, i.e., the solution is not
unique at certain frequencies. Internal resonances can
be eliminated by combining equations (11) and (12) in
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a similar fashion as the T- and N- equations are com-
bined in [13] in the case of penetrable objects. This
gives the following combined field integral equation
(CFIE) formulation for DB objects

[

−F̃ r

F̃ t

]

=

[

Nt −Nr

Nr Nt

][

M̃

J̃

]

, (13)

with

Nt =
1

2
It −Kr − ikSt andF̃ t = H̃p

r + Ẽ
p
t . (14)

IV. NUMERICAL SOLUTION TO THE
INTEGRAL EQUATIONS

Integral equations (11–13) are solved numerically
with the method of moments [14]. First, the unknown
equivalent electricJ and magneticM surface cur-
rent densities are represented as linear combinations
of known tangential vector basis functionsf andg

J ≈
N
∑

k=1

jkfk

M ≈
M
∑

l=1

mlgl,

(15)

where jk and ml are scalar coefficients. By using
Maxwell’s equations and certain vector identities, we
can find a relation between the normal components of
the fields and the divergences of the equivalent surface
currents

∇s · J = iωεn ·E
∇s ·M = iωµn ·H.

(16)

As we can see, on the surface of a DB object the sur-
face divergences of the currents vanish (ifω 6= 0)
due to the DB boundary conditions (2). Therefore,
we have to expand both the electric and magnetic
equivalent surface current with a set of basis func-
tions which span a solenoidal vector space. We have
used the RWG loop basis functions [15] to expand the
equivalent currents, and the equations are tested with
Galerkin’s scheme using the RWG loop functions as
testing functions.

A numerical solution requires calculation of sin-
gular integrals because the Green’s function becomes
singular when the distance between the source point
and the observation point goes to zero. These inte-
grals are evaluated by using the singular subtraction
technique [16].

V. FIELD BEHAVIOR AT A DB WEDGE
Singularities of the fields appear near sharp wedges

and corners with a proper incident field, and these sin-
gularities can cause problems for the numerical so-
lution. For example, in case of a PEC or dielectric
wedge the fields are singular, and hence, we need to
use mesh refinement near the wedges and corners in
order to obtain an accurate solution. In this section,
we study singularities of fields in the case of a DB
wedge.

Consider a three-dimensional sharp wedge with a
DB boundary condition. Since the wedge is sharp,
we can use quasistatic approximation. Therefore, the
electric fieldE near the wedge can be expressed in
terms of the electrostatic potentialE = −∇φ. In the
static and source-current free case we can also express
the magnetic field in terms of a scalar potentialH =
−∇φm, but here we only consider the electric field
because the analysis is identical in both cases.

We know that the potential function outside the
wedge must satisfy the Laplace’s equation

∇2φ = 0, (17)

because the divergence of the electric field must be
zero in a source free region. Also, the field must sat-
isfy the boundary condition at the surface. We can
approximate this problem with the two-dimensional
infinite wedge, see Fig. 1.

ϕ
ϕ0

−ϕ0

ρ
axis of

symmetry

Fig. 1. Two-dimensional infinite wedge. Surface of
the wedge is atϕ = ϕ0 andϕ = −ϕ0.

In the polar coordinate system the Laplace’s equa-
tion (17) can be expressed as

∇2φ(ρ, ϕ) =
1

ρ

∂

∂ρ

(

ρ
∂φ(ρ, ϕ)

∂ρ

)

+
1

ρ2
∂2φ(ρ, ϕ)

∂ϕ2
= 0,

(18)
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whereρ is the radial coordinate andϕ is the angular
coordinate. This equation can be solved by the sepa-
ration of variables

φ(ρ, ϕ) =
∑

n

Pn(ρ)Φn(ϕ), (19)

which leads to two separate differential equations

∂2Φn(ϕ)

∂ϕ2
+ ν2nΦn(ϕ) = 0 (20)

ρ
∂

∂ρ

(

ρ
Pn(ρ)

∂ρ

)

− ν2nPn(ρ) = 0. (21)

General solutions for the equations (20) and (21) are

Φn(ϕ) = An sin(νnϕ) +Bn cos(νnϕ)

Pn(ρ) = Cnρ
νn +Dnρ

−νn ,
(22)

whereAn, Bn, Cn, andDn are the unknown coeffi-
cients. The coefficientDn must be zero, because a
negative exponentρ−νn leads to an infinite energy at
the origin.

AntisymmetricE SymmetricE

Fig. 2. Antisymmetric and symmetric excitations with
respect to the wedge.

If the incident field is symmetric with respect to the
plane of symmetryϕ = 0 (see Fig. 2), the potential
function can be expressed as

φ(ρ, ϕ) =
∑

n

Bnρ
νn cos(νn(π − ϕ)), (23)

if ϕ0 ≤ ϕ ≤ 2π − ϕ0. By taking the gradient of the
potential function, we obtain the electric field

E(ρ, ϕ) = −∇φ(ρ, ϕ)

= −uρ

∑

n

Bnρ
νn−1νn cos(νn(π − ϕ))

−uϕ

∑

n

Bnρ
νn−1νn sin(νn(π − ϕ)).

(24)

By using the DB boundary conditionuϕ · E = 0 at
ϕ = ϕ0, we find that

∑

n

Bnρ
νn−1νn sin(νn(π − ϕ0)) = 0, (25)

which is satisfied if

νn =
π

π − ϕ0

n, n = 1, 2, ... (26)

Next, we consider the antisymmetric case where the
incident field is normal to the plane of symmetry (ϕ =
0). Now the potential function is

φ(ρ, ϕ) =
∑

n

Anρ
νnνn sin(νn(π − ϕ)), (27)

if ϕ0 ≤ ϕ ≤ 2π − ϕ0, and the electric field can be
expressed as

E(ρ, ϕ) = −∇φ(ρ, ϕ)

= −uρ

∑

n

Anρ
νn−1νn sin(νn(π − ϕ))

+uϕ

∑

n

Anρ
νn−1νn cos(νn(π − ϕ)).

(28)

In the case of the DB boundary condition

∑

n

Anρ
νn−1νn cos(νn(π − ϕ0)) = 0, (29)

which is satified if

νn =
π

2(π − ϕ0)
n, n = 1, 3, 5, ... (30)

Parameterνn defines the order of singularity of field,
since the field strength is related to a termρνn−1. It
is easy to see that the field has a singularity if the
smallest value of the parameterνn < 1. Figure 3
shows the value of the parameterν1 as a function of
angleϕ0. We can see that the DB wedge has a singu-
larity if the excitation field is antisymmetric, and the
angleϕ0 < 90 degrees.

It is important to note that a solution in the case of
an arbitrarily polarized field can be found as a linear
combination of symmetric and antisymmetric excita-
tions. This analysis is valid also ifE is replaced by
H because of the symmetry of the DB boundary con-
dition.
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Fig. 3. Parameterν1 asa function of angleϕ0 with
either symmetric or antisymmetric excitations. The
field is singular if the parameterν1 < 1.

VI. NUMERICAL RESULTS
Let us first investigate the behavior of the equiva-

lent surface currents near a 90◦ wedge, which is char-
acterized by either DB or PEC boundary conditions.
We can solve the problem for the DB boundary in the
static case by using equations (26) and (30) and re-
quiringϕ0 = π/4. In Table 1, we see singularity fac-
tors (ρνn−1) in case of 90◦ DB and PEC wedges with
symmetric and antisymmetric excitations. The PEC
case can be solved in a similar way as the DB case,
but we have to apply the PEC boundary conditions
uρ ·E = 0 anduϕ ·H = 0.

Table 1: Singularities of 90◦ DB and PEC wedges
Excitation Field DB PEC

SymmetricEi E · uρ ρ
1

3 0

SymmetricH i H · uρ ρ
1

3 ρ
1

3

SymmetricEi E · uϕ 0 ρ−
1

3

SymmetricH i H · uϕ 0 0

AntisymmetricEi E · uρ ρ−
1

3 0

AntisymmetricHi H · uρ ρ−
1

3 ρ−
1

3

AntisymmetricEi E · uϕ 0 ρ
1

3

AntisymmetricHi H · uϕ 0 0

We can see that the tangential components of both
fields are singular in the case of the DB wedge with
antisymmetric excitation, but with symmetric excita-
tion fields are not singular. Also, we can see that the
normal components of fields vanish at the wedge due
to the DB boundary condition. In case of the PEC

wedge, the tangential electric field and the normal
component of the magnetic field are zero. With the
symmetric electric field incident, the normal compo-
nent of the electric field is singular but the tangential
component is non-singular. Also, the antisymmetric
magnetic field incident creates a singularity to the tan-
gential component of the magnetic field at the wedge.

Now, we know how fields behave near DB wedges,
and we can study the accuracy of the surface-integral-
equation-method based solution near DB wedges.
Consider a small cube with DB boundary condition.
This cube with edge lengtha is illuminated by a lin-
early polarized planewave with wavelengthλ = 10 a.
We can choose the alignment of the cube so that the
behavior of fields at the wedge corresponds to the 2-D
case with either symmetric or antisymmetric excita-
tions.

Fig. 4. Real part of the equivalent electric surface cur-
rent density at the surface of DB cube. The cube is il-
luminated by a planewave which is propagating along
z-axis and the electric field is polarized alongy-axis
and the magnetic field alongx-axis. The equivalent
currentJ has a singularity at the top edge, because
the incident magnetic field is antisymmetric with re-
spect to the wedge on top.

Figure 4 shows the real part of the equivalent elec-
tric surface current densityJ on the surface of the DB
cube. We can see that the equivalent electric surface
current (J = n×H) is singular at the wedge on top,
because in this case we have an antisymmetric inci-
dent magnetic field with respect to the wedge on top.
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Fig. 5. Amplitude of the equivalent electric surface
current density as a function of distance from the
sharp 90 degree DB and PEC wedges. Solutions are
obtained by using different formulations of surface in-
tegral equation method and quasistatic analysis.

In Figure 5, the amplitude of the equivalent electric
surface current density is shown as a function of dis-
tance from the wedge. The calculations are done by
using T-, N-, and C- formulations and the results are
compared with the quasistatic solution.

As can be seen, all three formulations give almost
identical results for the equivalent current densities
near 90◦ DB wedge, and the numerical results have a
good agreement with the quasistatic solution. How-
ever, there are some variations in the amplitude of
currents between formulations especially if the dis-
tance to the sharp wedge is short. Figure 5 also shows
the behavior of the equivalent surface current at the
PEC wedge. The PEC case is calculated by using the
conventional tangential electric field integral equation
(EFIE) formulation with RWG basis and testing func-
tions [17].

As the quasistatic analysis predicts, at the DB and
PEC wedge tangential fields have the same order of
singularity and the numerical results agree with it. It
is important to note that the normal component of the
electric field is singular in case of the PEC wedge, if
the incident electric field is symmetric with respect to
the wedge. We know that there is a relation between
the normal component of field and the divergence of
the equivalent surface current (16), but this singular-
ity does not affect the result in Figure 5 because the
incident electric field is not symmetric at the wedge.

Let us next study the convergence of the numerical
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1.24
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1.3

1.32

x 10
−9
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R
C

S
 / 

λ2

λ = 100 a

 

 

T−form.

T−form. refinement

N−form.

N−form. refinement

C−form.

C−form. refinement

Fig. 6. Calculated backscattered radar cross section of
a cube with edge lengtha and wavelengthλ = 100 a
as a function of number of unknowns. T-, N- and
C- formulations have been applied. The cube is dis-
cretized by using triangular meshes with or without
mesh refinement on the edges. Solid lines correspond
to the cases with mesh refinements and dotted lines
without mesh refinements.

solution in case of a DB cube. The setup is the same
as in Figure 4. In Figure 6, the backscattered radar
cross section (RCS) as a function of the number of
unknowns is shown. The edge length of the cube isa
and the wavelength isλ = 100 a. In Figure 7 we can
see the convergence of RCS with wavelengthλ = 2 a.
We have used T-, N-, and C-formulations for calcula-
tions, and the surface of the cube is discretized by tri-
angular mesh with mesh refinement on the edges, or
without mesh refinement on the edges.

In this example wavelengths are 100 and 2 times the
edge length of the cube, and hence, both frequencies
are not at internal resonant frequencies. This means
that the solutions of T-, N-, and C- formulations are
unique. We can see that the T- formulation gives the
most accurate results for backscatted RCS. The con-
vergence of N- formulation is quite slow. The accu-
racy of C- formulation is between T- and N- formula-
tions which makes sense because C- formulation is a
combination of T- and N- formulations. This agrees
with the earlier results in the PEC case [18] where
T-formulation agrees with EFIE, N-formulation with
MFIE, and C-formulation with CFIE, respectively.
Figures 6 and 7 also show that the solutions converge
faster if mesh refinements on wedges are used.
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Fig. 7. Calculated backscattered radar cross section of
a DB cube with wavelengthλ = 2 a. Otherwise the
setup is the same as in Figure 6.

VII. CONCLUSIONS
In this paper, the accuracy of a surface-integral-

equation based solution for DB objects has been stud-
ied. A quasistatic solution for the field near DB
wedges has been derived and the results have been
compared with numerical calculations. The numer-
ical examples demonstrate that the surface-integral-
equation-method based solution is quite accurate near
DB wedges even if the field is singular at the wedge.
We have also showed that the tangential magnetic
field at the PEC wedge has the same order of singular-
ity as that of the DB wedge. The normal component
of the electric field can be singular at the PEC wedge,
but there is not such singularity at the DB wedge, be-
cause normal components of fields vanish at the DB
boundary. However, the effect of this singularity to
the equivalent surface current in the case of the PEC
wedge is much weaker than the effect of the singu-
larity in the tangential field. Therefore, we need to
use similar mesh refinements at the DB wedges as the
PEC wedges in order to obtain an accurate solution.

ACKNOWLEDGMENT
This study was supported by the Academy of Fin-

land projects 125979 and 124204.

REFERENCES
[1] A. Sihvola, P. Ylä-Oijala, and I. Lindell, “Scatter-

ing by PEMC (Perfect Electromagnetic Conductor)
Spheres using Surface Integral Equation Approach,”
ACES Journal, vol. 22, no. 2, pp. 236–249, 2007.

[2] P. R. Kildal, A. Kishk, and Z. Sipus, “Introduction
to Canonical Surfaces in Electromagnetic Computa-
tions: PEC, PMC, PEC/PMC Strip Grid, DB Sur-
face,” 26th Annual Review of Progress in Applied
Computational Electromagnetics, Tampere, Finland,
2010, pp. 514–519.

[3] P.-S. Kildal, “Definition of Artificially Soft and Hard
Surfaces for Electromagnetic Waves,”Electronics
Letters, vol. 24, pp. 168–170, Feb. 1988.

[4] P.-S. Kildal, “Artificially Soft and Hard Surfaces in
Electromagnetics,”IEEE Trans. Antennas and Prop-
agation, vol. 38, pp. 1537 –1544, Oct. 1990.

[5] I. V. Lindell and A. H. Sihvola, “Electromagnetic
Boundary and Its Realization with Anisotropic Meta-
material,”Physical Review E (Statistical, Nonlinear,
and Soft Matter Physics), vol. 79, no. 2, p. 026604,
2009.

[6] I. V. Lindell and A. H. Sihvola, “Spherical Resonator
with DB-Boundary Conditions,”Progress In Elec-
tromagnetics Research Letters, vol. 6, pp. 131–137,
2009.

[7] A. Sihvola, H. Wallén, P. Ylä-Oijala, M. Taskinen,
H. Kettunen, and I. V. Lindell, “Scattering by DB
Spheres,”Antennas and Wireless Propagation Let-
ters, IEEE, vol. 8, pp. 542–545, 2009.

[8] J. Markkanen, P. Ylä-Oijala, and A. Sihvola, “Com-
putation of Scattering by DB Objects with Surface
Integral Equation Method,”IEEE Trans. Antennas
and Propagation, vol. 59, pp. 154 –161, Jan. 2011.

[9] J. G. Van Bladel,Electromagnetic Fields. Wiley In-
terscience, 2nd ed., 2007.

[10] J. D. Jackson,Classical Electrodynamics. John Wi-
ley & Sons, 3rd ed., 1998.

[11] J. A. Stratton,Electromagnetic Theory. McGraw-
Hill Company, New York, London, 1941.

[12] M. Taskinen and P. Ylä-Oijala, “Current and Charge
Integral Equation Formulation,”IEEE Trans. Anten-
nas and Propagation, vol. 54, pp. 58–67, Jan. 2006.

[13] P. Ylä-Oijala and M. Taskinen, “Application of Com-
bined Field Integral Equation for Electromagnetic
Scattering by Dielectric and Composite Objects,”
IEEE Trans. Antennas and Propagation, vol. 53,
pp. 1168 – 1173, Mar. 2005.

[14] R. F. Harrington,Field Computation by Moment
Methods. IEEE press, New York, 1993.

[15] G. Vecchi, “Loop-Star Decomposition of Basis Func-
tions in the Discretization of the EFIE,”IEEE Trans.
Antennas and Propagation, vol. 47, pp. 339 –346,
Feb. 1999.

[16] S. Järvenpää, M. Taskinen, and P. Ylä-Oijala, “Sin-
gularity Subtraction Technique for High-Order Poly-
nomial Vector Basis Functions on Planar Triangles,”
IEEE Trans. Antennas and Propagation, vol. 54,
pp. 42 – 49, Jan. 2006.

[17] S. Rao, D. Wilton, and A. Glisson, “Electromagnetic
Scattering by Surfaces of Arbitrary Shape,”IEEE

373MARKKANEN, YLÄ-OIJALA, SIHVOLA: SURFACE INTEGRAL EQUATION METHOD FOR SCATTERING BY DB OBJECTS WITH SHARP WEDGES



Trans. Antennas and Propagation, vol. 30, pp. 409–
418, May 1982.

[18] P. Ylä-Oijala, M. Taskinen, and S. Järvenpää, “Anal-
ysis of Surface Integral Equations in Electromagnetic
Scattering and Radiation Problems,”Engineering
Analysis with Boundary Elements, vol. 32, pp. 196–
209, 2008.

Johannes Markkanenwas born in
Kerava, Finland, in 1984. He re-
ceived the M.Sc. (Tech.) degree
in Electrical Engineering from the
Helsinki University of Technology
(TKK), Espoo, Finland, in 2009.
Currently, he is working toward the
D.Sc. (Tech.) degree in the Aalto
University, School of Electrical En-

gineering, Department of Radio Science and Engineering,
Finland. His research interests include integral equation
methods in computational electromagnetics.

Pasi Ylä-Oijala received the M.Sc.
and Ph.D. degrees in Applied Math-
ematics from the University of
Helsinki, Helsinki, Finland, in 1992
and 1999, respectively. Currently,
he is working as a senior researcher
with the Aalto University, School of
Electrical Engineering, Department
of Radio Science and Engineering,

Finland. His field of interest focuses on the development
of efficient and stable integral equation based formula-
tions and algorithms in computational electromagnetics,
and analysis of electromagnetic phenomena.

Ari Sihvola was born in 1957 in
Valkeala, Finland. He received
the degrees of Diploma Engineer
in 1981, Licentiate of Technology
in 1984, and Doctor of Technol-
ogy in 1987, all in Electrical Engi-
neering, from the Helsinki Univer-
sity of Technology (TKK), Finland.
Besides working for TKK and the

Academy of Finland, he was visiting engineer in the Re-
search Laboratory of Electronics of the Massachusetts In-
stitute of Technology, Cambridge, in 1985-1986, and in
1990-1991, he worked as a visiting scientist at the Penn-
sylvania State University, State College. In 1996, he was
visiting scientist at the Lund University, Sweden, and for
the academic year 2000-01, he was visiting professor at the
Electromagnetics and Acoustics Laboratory of the Swiss
Federal Institute of Technology, Lausanne. In the Sum-
mer of 2008, he was visiting professor at the University of
Paris XI, France. Ari Sihvola is professor of electromag-
netics in Aalto University School of Electrical Engineering
(former name before 2010: Helsinki University of Technol-
ogy) with interest in electromagnetic theory, complex me-
dia, materials modelling, remote sensing, and radar appli-
cations. He is Chairman of the Finnish National Committee
of URSI (International Union of Radio Science), official
member for Finland of URSI Commission B (Fields and
Waves), and Fellow of IEEE. He was awarded the five-year
Finnish Academy Professor position starting August 2005.
He is also director of the Finnish Graduate School of Elec-
tronics, Telecommunications, and Automation (GETA).

374 ACES JOURNAL, VOL. 26, NO. 5, MAY 2011




