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Abstract ─ This paper presents a comparative 
study of some analytical and numerical techniques 
in the solution of a classical problem of 
electromagnetic scattering from single and double 
knife edge above ground. The results of the 
analytical exact and asymptotic techniques (such 
as uniform theory of diffraction, parabolic 
equation diffraction method) are compared with 
the two-way split-step parabolic equation method 
(SSPE), through several numerical simulations. 
Salutary discussions on their capabilities and 
limitations are presented. Codes used in the 
simulations are provided in the end. 
   
Index Terms ─ Diffraction, electromagnetic 
scattering, geometric optics (GO), ground wave 
propagation, two-way split-step parabolic equation 
method, uniform theory of diffraction (UTD).  
 

I. INTRODUCTION 
Electromagnetic ground wave propagation 

over the Earth’s surface is affected by several 
scattering phenomena, such as reflection, 
refraction, and diffraction. Developing a rigorous 
method for understanding the effects of varying 
conditions on ground wave propagation is usually 
a challenging task because of the vast variability 
of the medium parameters and also the complexity 
of the surfaces and obstacles that re-direct the 
propagating energy. Initially, the prediction of the 
ground wave propagation problem has been 

achieved by means of some analytical exact or 
analytical asymptotic techniques [1-17], which 
require the geometry to be represented as a 
member of a set of some canonical geometries. 
The exact techniques express the solution in the 
form of infinite series or integral and may serve as 
reference but might be poorly convergent at high 
frequencies when the dimensions of the objects are 
much larger than the wavelength. Asymptotic 
techniques have been widely used for decades to 
solve problems at high (usually optical) 
frequencies. These high-frequency asymptotic 
(HFA) approaches employ simplified models of 
electromagnetic wave reflection, refraction and 
diffraction such as geometric optics (GO), 
physical optics (PO), geometric theory of 
diffraction (GTD) [8-9], uniform theory of 
diffraction (UTD) [10-11], physical theory of 
diffraction (PTD) [12-13]. The GO model 
describes only the incident, reflected and refracted 
waves on the illuminated side of the scatterers. 
The GTD model is complementary to the GO 
model, in the sense that it overcomes some 
limitations of GO by including the diffraction 
mechanism. However, the GTD model exhibits 
singularities along the incident and reflection 
shadow boundaries (ISB and RSB). The uniform 
theory of diffraction (UTD) model achieves 
smooth wave behavior along these boundaries. 
This family (GO, GTD, UTD) is also known as 
ray tracing techniques in the literature. The PO 
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and PTD models, on the other hand, are based on 
induced currents on the surfaces of the scatterers. 
The PTD model supplements PO by introducing 
non-uniform ("fringe") edge currents to 
incorporate the effect of diffraction into the 
solution. In spite of simplicity, the asymptotic 
techniques suffer from two major drawbacks: (i) 
Solutions are available only for certain canonical 
objects, such as wedge (or knife-edge), cylinder. 
(ii) (Unless ray-shooting is not used) vertically-
varying refractivity profiles in the troposphere 
cannot be handled. 

With the advances in computers, some 
numerical techniques have been devised to solve 
the ground wave propagation problem involving 
complex geometries and inhomogeneous 
environments. Split-step parabolic equation 
(SSPE) method [18-22] has been widely used in 
propagation modeling because of its capability in 
modeling both horizontally- and vertically-varying 
atmospheric refraction (especially ducting) effects. 
It solves an initial-value problem starting from a 
source (or an antenna), and marching out in range 
by computing the field along the vertical direction 
at each range by means of step-by-step Fourier 
transformations. The classical SSPE method deals 
only with forward propagating waves, and thus, it 
is a one-way model that is valid in the paraxial 
region. Recently, a two-way SSPE algorithm has 
been introduced [23, 24] to incorporate the 
backward propagating waves into the one-way 
SSPE by utilizing an iterative forward-backward 
scheme for modeling multipath effects. This 
algorithm has been served for the public's use via a 
novel, MATLAB based software tool (PETOOL) 
[25]. In spite of several advantages, the SSPE 
method takes the diffraction effects into account 
within the paraxial approximation, degrading the 
accuracy of the approach in deep-shadow regions 
where the diffracted fields dominate. 

The organization of this paper is as follows: In 
Sec. II, analytical exact and asymptotic methods 
are briefly formulated. In Sec. III, fundamentals of 
the two-way SSPE are outlined. In Sec. IV, the 
techniques are compared through several 
numerical simulations. In the Appendix, the codes 
used in the simulations are presented.   

Except Sec. II C, the time dependence of the 
form exp( )ω−i t is assumed.  

 

II. ANALYTICAL EXACT AND 
ASYMPTOTIC MODELS 

This section discusses various analytical 
approaches, belonging to the family of ray-based 
techniques. The problem of interest is the 2D 
electromagnetic ground wave propagation where 
single or multiple knife-edges are located on a flat 
conducting surface and illuminated by a line-
source (see Fig. 1). The problem of single or 
multiple knife-edge (or wedge in general) 
suspended in a homogeneous medium is one of the 
classical, canonical problems, and plays a 
fundamental role in the construction of the high-
frequency asymptotic techniques. If the edges are 
located on a conducting surface, the image theory 
can be employed to account for the multiple 
reflections from the ground or edges. The total 
field is then obtained by the sum of the direct ray, 
the reflected rays emanating from image sources, 
and the diffracted rays from the tip of the edges, 
by also checking the line-of-sight (LOS) 
conditions between the source and the observation 
point. The beauty of this model is that it yields 
physical insight, and contributions of every ray 
item can be observed separately. 
 

 
Fig. 1: Geometry of the problem, illustrating some 
possible ray contributions for different observation 
points (A, B, C). [Red: direct, Green: diffracted, 
Blue: reflected or diffracted/reflected]. 

 
The subsections below formulate various 

techniques to modeling of the diffracted field from 
the tip of a single wedge in the absence of ground 
(see Fig. 2). The more general problem in Fig. 1 
involving multiple bouncing of the rays can be 
handled by a successive implementation of GO 
and diffraction algorithms depending on different 
LOS conditions (this is indeed just a coding issue). 
The wedge in Fig. 2 is illuminated by a 
cylindrically diverging line-source. The tip-to-
source distance and the source angle are denoted 
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by 0r  and 0ϕ , respectively; whereas the tip-to-
observer distance and the observation angle are 
represented by r  and ϕ , respectively. The wedge 
exterior angle α  is set to 2π in the simulations to 
model the knife-edge. On the other hand, more 
realistic, hill-type obstacles may be modeled easily 
by setting 2α π≠ . The wedge surface is assumed 
to be perfect electric conductor. As conventional 
in the diffraction theory, the polarization will be 
referred to as soft or hard polarizations, which are 
equivalent to horizontal or vertical polarizations, 
respectively.  

 

 
Fig. 2. Problem of scattering from a wedge. 

 
A. Exact series model 

Analytical exact solution of the problem in Fig. 
2 can be obtained by using the separation of 
variables method, which reduces the 2D wave 
equation into two 1D wave equations; one in the 
angular domain, the other in the radial domain. 
Depending on the boundary conditions, the angular 
domain solutions are expressed in terms of sine or 
cosine functions, whereas the radial domain 
solutions are constructed by means of Bessel or 
Hankel functions. Bessel and Hankel functions are 
appropriate for 0≤r r  and for 0>r r , respectively. 

Assuming a line source of the form of 
0 0 0( , )δ ϕ ϕ− −I r r , the exact total field for soft and 

hard boundary conditions, respectively, are 
expressed in series as follows: [15] 
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Here, k is the wavenumber, u π α=m m , 1 2ε =m  
if 0=m  and 1ε =m  otherwise; and 

( ) ( )0sin sins m mf n ϕ n ϕ= , ( ) ( )0cos cosh m mf n ϕ n ϕ= . 
Since the total field is the sum of the diffracted 

field and the GO field (i.e., , , ,= +t d GO
s h s h s hu u u ), the 

diffracted field ,
d
s hu  can be obtained by subtracting 

the GO field from the total field. The GO field is 
the sum of the incident (direct) field and the 
reflected field emanating from the image source 
(i.e., , , ,= +GO inc r

s h s h s hu u u  where ,
, ,=r inc image

s h s hu u ). The 
incident field is expressed in terms of Hankel 
function, i.e., (1)

0 ( )=inc
su H kR , where R is the 

distance between the source (actual or image) and 
observation points (i.e., actualR  or imageR ). Hence, 
the GO field can be expressed with respect to the 
LOS conditions, as follows: 
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(6) 
Note that the case 00 ϕ α π≤ ≤ −  in (5) and 

0α π ϕ π− ≤ ≤  in (6) refer to Single-Side (only one 
face) and Double-Side illuminations, respectively. 

Under the conditions where 0 1>>kr  and 
1>>kr , asymptotic forms of Hankel functions can 

be used. Hence, the diffracted field can be cast into 
the following form: 

, 0 ,
e

=d
s h s h

ikr
u u d

r
  ,        (7) 

where (1)
0 0 0( )=u H kr  is the incident field at the tip 

of the wedge, and ,s hd  is the diffraction coefficient. 
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Thus, (7) allows us to compute the diffraction 
coefficient approximately after the exact diffracted 

field is computed, i.e., ( ), , 0 ed
s h s h

ikrd r u u −= . 
It is useful to note that the number of terms in 

the series expressions increases drastically as the 
frequency increases and/or the observation point 
moves away from the tip of the wedge. This might 
obviously place a bottleneck on the computation 
time during the numerical implementation. 

 
B. Exact integral model  

Analytical exact solution of the wedge 
diffraction problem can also be obtained by an 
integral representation presented by Bowman & 
Senior in a handbook [6]. The diffracted fields can 
be expressed as allows: 
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respectively. Here, 
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where α π=n  and 2 2
0 0( ) 2 cos( )η η= + +R r r rr . 

Note that the total fields can be determined by 
adding the GO fields to the diffracted fields in (8). 
Similarly, the diffracted field can be expressed in 
the form of (7), from which the diffraction 
coefficient is calculated. Away from the shadow 
boundaries, asymptotic form of the diffraction 
coefficient can be derived as follows: 
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where (-) and (+) are for soft and hard polarizations, 
respectively. Here, the complex exponential term 

/ 4e πi  indicates that the wedge tip is the caustic of 
edge-diffracted rays. Note that the critical part of 
this representation is the numerical integration of 
the ( )βdV

 
integral in (9), which contains 

singularities on the complex β
 
plane because of 

Hankel function and the denominator [26]. Since 
the direct numerical integration along positive real 
axis is very time consuming, a deformed contour 
can be used to accelerate the computations. 

C. Uniform theory of diffraction (UTD) model 
In this model, the diffracted field is also 

expressed in the same form in (7), except that 
(2)

0 0 0( )=u H kr  and / 4e πi  is replaced by / 4e π− j  due 
to the time dependence convention in UTD. The 
UTD diffraction coefficients are given as [10]: 
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where (-) and (+) are for soft and hard polarizations, 
respectively. Furthermore, 0ξ ϕ ϕ+ = + ,  0ξ ϕ ϕ− = −  
and ( )F X  is the Fresnel function given as follows: 
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where ( ) 2π ξ π± = ± +N n  are the integers that 
most closely satisfy this expression. 

Note that the cotangent functions in (11) 
possess singularities at the shadow boundaries, and 
hence, can be replaced by the following: 

( )
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for small 0ε → . Similarly, the total fields are 
obtained by adding the GO and the diffracted fields, 
according to the LOS conditions. Finally, note that 
the UTD diffraction coefficients are equivalent to 
(10) away from the shadow boundaries, by 
replacing / 4e πi  with / 4e π− j . 
 
C. Parabolic equation (PE) model 

The parabolic equation (PE) diffraction method 
provides a correct first-order approximation to the 
diffracted field in the case when 1>>kr  and 

0 1>>kr  [13]. Note that, in spite of the similarity of 

379 ACES JOURNAL, VOL. 27, NO. 5, MAY 2012



name, this model is different from the split-step 
parabolic equation (SSPE) method, which is a 
numerical marching type algorithm described in 
Sec. III. The PE-based diffracted field can be 
determined as follows: 
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where / 42 e πη −= is , / 42 e sin / 2π ζ−= is  and  
2 2( ) ln(1 2 )ζ = − + + −s i is is s i . This form is 

convenient for numeric calculation and asymptotic 
evaluation [26]. In the vicinity of the saddle point 
( 1<<s ), the following approximations can be 
made: 
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Thus, the two first terms in the square brackets of 
(18), which are singular  at the saddle point when 

0ψ ϕ ϕ π= ± = , completely cancel each other and 
the standard saddle point technique can be applied 
to the integral over the variable s .    

Finally, the diffraction coefficients are found as 
follows: 

       0
, 0

0

( , , )ρ ϕ ϕ=
+s h
rrd W k

r r
,                  (20) 

which reduces to (10) away from the shadow 
boundaries.  

III. TWO-WAY SPLIT-STEP 
PARABOLIC EQUATION MODEL 
The parabolic wave equation (PWE) is derived 

from the 2D Helmholtz wave equation by 
separating the rapidly varying phase term to obtain 
a reduced function varying slowly in range for 
propagating angles close to the paraxial (horizontal) 
direction. The PWE can be converted to an initial 
value problem and can be solved by a marching-
type numerical algorithm. The Fourier split-step 
parabolic equation (SSPE) is a powerful algorithm 
which accepts the initial field at a reference range 
(e.g., at an antenna) and then advances in range by 
computing the field along longitudinal direction at 
each range step. The classical SSPE is known as 
one-way approach because it handles only the 
forward-propagating waves, and cannot account for 
the backscattered ones. The classical one-way SSPE 
determines the longitudinal field at range + ∆x x  as 
follows [20]: 
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where F denotes the Fourier Transform, = zp k  is 
the transform variable (i.e., transverse wavenumber 

sinθ=p k  where θ is the propagation angle from 
the horizontal), and n is the refractive index. Eqn. 
(21) is valid for propagation angles up to 10°-15°, 
and hence, it is known as narrow-angle SSPE. 
Long-range propagation can be accurately modeled 
with the narrow-angle SSPE because propagation 
angles encountered in such problems are usually 
less than a few degrees. However, short range 
propagation problems, as well as the problems 
involving multiple reflections and diffractions 
because of hills and valleys with steep slopes, can 
be modeled more accurately with the wide-angle 
SSPE, which is effective for propagation angles up 
to 40°-45° [22, 25]. The wide-angle SSPE obtains 
the field at each range as follows: 
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Although the one-way SSPE model is quite 
effective in modeling electromagnetic propagation 
above the Earth’s irregular surface through 
inhomogeneous atmosphere, it suffers from the 
disability of handling backward-propagating waves. 
The forward waves might be sufficient for long-
range propagation scenarios. However, the 
backward waves become significant in the presence 
of obstacles that re-direct the incoming wave, 
which renders a necessity of estimating the 
multipath effects accurately. Recently, a two-way 
SSPE algorithm was implemented in [23] to 
incorporate the backward-propagating waves into 
the solution, through a recursive forward-backward 
scheme to model the electromagnetic propagation 
over a staircase-approximated terrain (i.e., the 
terrain is modeled like a train of knife-edges). If the 
wave meets the terrain (or knife-edge), it is 
partially-reflected by imposing the appropriate 
boundary conditions on the terrain facet, and is 
marched out in the backward direction by reversing 
the paraxial direction in the PWE formulation. Note 
that the same form of (22) is used during the 
backward propagation. At each step where the wave 
hits the terrain, the wave is split into two 
components (forward and backward). Each wave 
component continues to march out in its own 
paraxial direction. The convergence of the 
algorithm is checked against a certain threshold 
criterion comparing the total fields at each iteration. 
The two-way SSPE algorithm was implemented in 
MATLAB and presented as a software tool (called 
PETOOL), which can be downloaded from [25]. 

 
IV. NUMERICAL SIMULATIONS 

This section demonstrates the test results of 
the analytical and numerical techniques over 
different propagation scenarios. The first scenario 
involves a single knife-edge of height 150 m 
located at 3 km. The line-source is at 50 m height; 
the frequency is 300 MHz; and the polarization is 
soft. The 3D maps of the propagation factor1 
within the entire domain are plotted in Fig. 3. Note 
that the exact models are not included in this 
figure because they are extremely time-
consuming.  

A good agreement is observed among the 
results of the analytical techniques. When the two-
                                                 
1 The propagation factor (PF) is the field strength 
relative to its free-space value in dB. 

way SSPE is compared with the analytical 
techniques, a good conformity is obtained in the 
region before 3 km that is in the interference 
region, but a slight discrepancy is observed in the 
region after 3 km that is in the deep-shadow / 
diffraction region. This discrepancy might be due 
to ignoring some of the less contributing ray 
components, and/or due to the limitation of SSPE 
within the paraxial regions. It is also observed that 
artificial effects around the shadow boundaries are 
clearly apparent on the maps of the analytical 
methods. However, SSPE model provides 
smoother wave behavior around the transition 
regions.  

 

 
Fig. 3.  3D PF maps for a single knife edge above 
ground at 3 km range illuminated by a line-source 
at 50 m height (soft polarization): (a) Two-way 
SSPE, (b) GO+UTD, (c) GO+PE [f = 300 MHz].  
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All techniques are also compared in Fig. 4, 
which shows the polar plot of the total field along 
a circle of radius 50 m centered at the tip of the 
single knife edge. In addition, in Figs. 5(a) and 
5(b), the PF values are plotted at two different 
values of range (2.8 km and 4 km, which are in 
interference and shadow regions, respectively). In 
Figs. 5(c) and (d), similarly, the values are plotted 
at different height values (140 m and 160 m). It is 
concluded from the results that all analytical 
methods are in good harmony with each other. The 
results of the two-way SSPE are slightly different 
in the shadow region, as discussed above. 
However, it is remarkable to emphasize that the 
efficiency of the two-way SSPE, in terms of the 
computation time, is quite superior to the 
analytical techniques. Moreover, the two-way 
SSPE can easily be applied to any type of terrain 
or any number of knife-edges with little effort. If 
the analytical techniques are sorted according to 
the computation time, UTD is the fastest, and then 
the PE, exact integral and exact series methods 
come in order. But, especially in the exact 
methods, the computation time is highly 
dependent on the frequency and the distance 
between the observation point and the edge. Note 
that analytical exact models serve as reference if 
numerically computed accurately. 

 
 

 
Fig. 4.  Polar plot of the total field along a circle of 
radius 50 m centered at the tip of the single knife 
edge shown in Fig. 3. [s: series, i: integral]. 

 
Fig. 5. 2D PF plots for the single knife edge 
problem shown in Fig. 3: (a) PF vs. height at 2.8 
km range, (b) PF vs. height at 4 km range, (c) PF 
vs. range at 140 m height, (d) PF vs. range at 160 
m height. [s: series, i: integral]. 

382OZGUN, SEVGI: MODELING EM SCATTERING FROM SINGLE AND DOUBLE KNIFE-EDGE IN 2D GROUND WAVE PROPAGATION  



The second scenario is the same as the first 
one, except that the polarization is hard and the 
line-source is at 100 m height. The results are 
plotted in Figs. 6, 7, and 8. Again, a good 
agreement is observed among different models. 

 
 

 
 

Fig. 6.  3D propagation factor maps for a single 
knife edge above ground at 3 km range illuminated 
by a line-source at 100 m height (hard 
polarization): (a) Two-way SSPE, (b) GO+UTD, 
(c) GO+PE. [f = 300 MHz].  
 

The last scenario considers double knife-edge 
of heights 150 m and 170 m located at 3 km and 5 
km, respectively. The line-source is at 25 m 
height; the frequency is 300 MHz; and the 
polarization is soft. The results are plotted in Figs. 
9, 10, and 11. In comparing the two-way SSPE 

with the analytical methods, the contributions of 
the waves hitting the walls up to 3 times are 
superposed. To achieve fair comparisons up to the 
third degree of reflections, the analytical methods 
account for 35 types of rays bouncing from the 
walls and the ground. The multiple bouncing of 
the diffracted fields from the walls and the ground 
is ignored due their negligible effects compared to 
strong reflections. 
 

 
Fig. 7.  Polar plot of the total field along a circle of 
radius 50 m centered at the tip of the single knife 
edge shown in Fig. 6. [s: series, i: integral]. 
 

Again, a good agreement is observed 
especially in the regions where strong multipath 
effects are observed, but some discrepancies exist 
between SSPE and the diffraction algorithms in 
the deep shadow region. 

Simulations with double knife-edges and with 
other frequencies are repeated for the other 
polarization (i.e., hard boundary condition) and 
similar agreement among the models are obtained.  
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Fig. 8. 2D PF plots for the single knife edge 
problem shown in Fig. 6: (a) PF vs. height at 2.8 
km range, (b) PF vs. height at 4 km range, (c) PF 
vs. range at 140 m height, (d) PF vs. range at 160 
m height. [s: series, i: integral]. 

 
Fig. 9.  3D propagation factor maps for double 
knife edge above ground at 3 km and 5 km ranges 
illuminated by a line-source at 25 m height (soft 
polarization): (a) Two-way SSPE, (b) GO+UTD, 
(c) GO+PE. [f = 300 MHz].  
 

V. CONCLUSION 
Analytical (exact and asymptotic) techniques 

and the two-way SSPE were discussed and 
compared through several numerical simulations 
in the context of the problem of scattering from 
single and double edge above ground. It was 
concluded that the results are in good agreement in 
general, however, some differences might be 
observed in the deep shadow region or around the 
shadow boundaries. The disparity of the two-way 
SSPE in the shadow region, which indeed exhibits 
"small" field values, might be tolerated in favor of 
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its computational efficiency. Finally, MATLAB-
based codes were provided in Appendix.    
 

 
Fig. 10.  Polar plot of the total field along a circle 
of radius 50 m centered at the tip of each knife 
edge shown in Fig. 9: (a) Edge at 3 km range, (b) 
Edge at 5 km range. [s: series, i: integral]. 

 
Fig. 11. 2D propagation factor (PF) plots for the 
double knife edge problem shown in Fig. 9: (a) PF 
vs. height at 2.5 km range, (b) PF vs. height at 4 
km range, (c) PF vs. range at 100 m height, (d) PF 
vs. range at 160 m height. [s: series, i: integral]. 
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APPENDIX 
MATLAB Codes 

Sample codes for the diffraction algorithms in 
Sec. II are given in Tables 1-5 below. The codes 
computing the 3D field maps of the single or 
double edge problem (with respect to various LOS 
conditions) can be provided upon request from the 
authors. Note that the two-way SSPE algorithm 
(PETOOL) can be downloaded from [25]. 
 

Table 1: Input parameters common to the codes 
clear all; format long; 
freq = 300; %input('frequency [MHz] = '); 
alfamax = 360; %input('wedge angle [Deg] = '); 
I0 = 1; %input('strength of line source  = '); 
r = 50; %input('distance of the observer to wedge  = '); 
r0 = 212; %input('distance of the source to wedge  = '); 
ang0 = 45; %input('incident angle [Deg] = '); 
ang = 150; %input('observation angle [Deg] = ');   
c = 3e8; % speed of light 
alfa = alfamax*pi/180; % change wedge angle degree to radians 
ang0 = ang0*pi/180; % change incident angle degree to radians 
ang = ang*pi/180;  % change observation angle degree to radians 
error = 1e-12;   
freq = freq*1e6; rlam = r*freq/c; k = 2*pi*freq/c;  kr = k*r; kr0 = k*r0; 

 
Table 2: Code of the exact by series method 

Us=0; Uh=0; n=0; vn=0;   err1 = 1e6; err2 = 1e6;  coeff1 = pi*I0/(1i*alfa);      
U0 = I0*besselh(0,1,kr0)/(4*1i);  
% define N for Soft BSc  
 while (err1 > error)  
     vn1 = n*pi/alfa;  vn2 = (n+1)*pi/alfa;   vn3 = (n+2)*pi/alfa; 
     vn4 = (n+3)*pi/alfa;  vn5 = (n+4)*pi/alfa; 
     if r <= r0 
       a1 = besselj(vn1,kr)*besselh(vn1,1,kr0)*sin(vn1*ang0)*sin(vn1*ang); 
       a2 = besselj(vn2,kr)*besselh(vn2,1,kr0)*sin(vn2*ang0)*sin(vn2*ang); 
       a3 = besselj(vn3,kr)*besselh(vn3,1,kr0)*sin(vn3*ang0)*sin(vn3*ang); 
       a4 = besselj(vn4,kr)*besselh(vn4,1,kr0)*sin(vn4*ang0)*sin(vn4*ang); 
       a5 = besselj(vn5,kr)*besselh(vn5,1,kr0)*sin(vn5*ang0)*sin(vn5*ang); 
       Xs = a1+a2+a3+a4+a5;  err1 = abs(Xs); 
     else 
       a1 = besselj(vn1,kr0)*besselh(vn1,1,kr)*sin(vn1*ang0)*sin(vn1*ang); 
       a2 = besselj(vn2,kr0)*besselh(vn2,1,kr)*sin(vn2*ang0)*sin(vn2*ang); 
       a3 = besselj(vn3,kr0)*besselh(vn3,1,kr)*sin(vn3*ang0)*sin(vn3*ang); 
       a4 = besselj(vn4,kr0)*besselh(vn4,1,kr)*sin(vn4*ang0)*sin(vn4*ang); 
       a5 = besselj(vn5,kr0)*besselh(vn5,1,kr)*sin(vn5*ang0)*sin(vn5*ang); 
       Xs = a1+a2+a3+a4+a5;  err1 = abs(Xs); 
     end 
     n=n+1;  
 end 
N1 = n+10; 
% define N for Hard BSc  
n=0; vn=0;    
while (err2 > error)  
     vn1 = n*pi/alfa;  vn2 = (n+1)*pi/alfa;   vn3 = (n+2)*pi/alfa; 
     vn4 = (n+3)*pi/alfa;  vn5 = (n+4)*pi/alfa; 
     if (n == 0) eps = 0.5; else eps = 1; end 
     if r <= r0 
    b1 = eps*besselj(vn1,kr)*besselh(vn1,1,kr0)*cos(vn1*ang0)*cos(vn1*ang); 
    b2 = eps*besselj(vn2,kr)*besselh(vn2,1,kr0)*cos(vn2*ang0)*cos(vn2*ang); 
    b3 = eps*besselj(vn3,kr)*besselh(vn3,1,kr0)*cos(vn3*ang0)*cos(vn3*ang); 
    b4 = eps*besselj(vn4,kr)*besselh(vn4,1,kr0)*cos(vn4*ang0)*cos(vn4*ang); 
    b5 = eps*besselj(vn5,kr)*besselh(vn5,1,kr0)*cos(vn5*ang0)*cos(vn5*ang); 
    Xh = b1+b2+b3+b4+b5; err2 = abs(Xh); 
     else 
    b1 = eps*besselj(vn1,kr0)*besselh(vn1,1,kr)*cos(vn1*ang0)*cos(vn1*ang); 
    b2 = eps*besselj(vn2,kr0)*besselh(vn2,1,kr)*cos(vn2*ang0)*cos(vn2*ang); 
    b3 = eps*besselj(vn3,kr0)*besselh(vn3,1,kr)*cos(vn3*ang0)*cos(vn3*ang); 
    b4 = eps*besselj(vn4,kr0)*besselh(vn4,1,kr)*cos(vn4*ang0)*cos(vn4*ang); 
    b5 = eps*besselj(vn5,kr0)*besselh(vn5,1,kr)*cos(vn5*ang0)*cos(vn5*ang); 
    Xh = b1+b2+b3+b4+b5;  err2 = abs(Xh); 
     end 

     n=n+1;  
end  
N2 = n+10;  n = 0; 
%  Calculating Diffractted  and Total Field  
while N1 > n 
 vn = n*pi/alfa; 
 if n == 0 eps = 0.5; else eps = 1; end 
if r <= r0,Us=Us+besselj(vn,kr)*besselh(vn,1,kr0)*sin(vn*ang0)*sin(vn*ang); 
else, Us=Us+eps*besselj(vn,kr0)*besselh(vn,1,kr)*sin(vn*ang0)*sin(vn*ang); 
end 
 n=n+1;   
end 
n = 0;   
while N2 > n 
vn = n*pi/alfa; 
if n == 0 eps = 0.5; else eps = 1; end 
if r <= r0 
Uh=Uh+eps*besselj(vn,kr)*besselh(vn,1,kr0)*cos(vn*ang0)*cos(vn*ang); 
else 
Uh=Uh+eps*besselj(vn,kr0)*besselh(vn,1,kr)*cos(vn*ang0)*cos(vn*ang); 
end 
n=n+1;   
end 
Us=Us*coeff1;  Uh=Uh*coeff1; 
if (ang >= 0) && (ang < pi-ang0)   % -------- Region I ------- 
    R1=sqrt(r*r+r0*r0-2*r*r0*cos(ang-ang0)); 
    R2=sqrt(r*r+r0*r0-2*r*r0*cos(ang+ang0)); 
    Uxs=I0*besselh(0,1,k*R1)/(4*1i)-I0*besselh(0,1,k*R2)/(4*1i); 
    Uxh=I0*besselh(0,1,k*R1)/(4*1i)+I0*besselh(0,1,k*R2)/(4*1i); 
    Usdiff = Us-Uxs;    Uhdiff = Uh-Uxh; 
elseif  (ang >= pi-ang0) && (ang < pi+ang0)   % -------- Region II ------- 
    R1=sqrt(r*r+r0*r0-2*r*r0*cos(ang-ang0)); 
    Ux=I0*besselh(0,1,k*R1)/(4*1i); Usdiff = Us-Ux;    Uhdiff = Uh-Ux; 
elseif (ang >= pi+ang0) && (ang <= alfa)  % -------- Region III ------- 
    Usdiff = Us;    Uhdiff = Uh; 
end 
UhnTOTAL_SERIES= (Uh/U0);    % exact normalised Total fields hard 
UhnDIFF_SERIES=(Uhdiff/U0)*sqrt(2*pi*kr)/exp(1i*kr); % exactdiffco hard 
UsnTOTAL_SERIES= (Us/U0);    % exact normalised Total fields Soft 
UsnDIFF_SERIES=(Usdiff/U0)*sqrt(2*pi*kr)/exp(1i*kr);  % exactdiffco soft 
UsnDIFF_SERIES = conj(UsnDIFF_SERIES/sqrt(2*pi*k)) 
UhnDIFF_SERIES = conj(UhnDIFF_SERIES/sqrt(2*pi*k)) 

 
Table 3: Code of the exact by integral method 

sgm = (2*pi-alfa)/2; phi0 = ang0+sgm;  B = ang+sgm;  
nu = (2*pi-2*sgm)/pi; phi = B; m = 0; U0 =  besselh(0,1,kr0);     
V1 = Vd_Int(-pi-phi+phi0,r,r0,nu,k); V2 = Vd_Int(pi-phi+phi0,r,r0,nu,k); 
V3 = Vd_Int(-pi-phi-phi0+2*sgm,r,r0,nu,k); 
V4 = Vd_Int(pi-phi-phi0+2*sgm,r,r0,nu,k); 
UsnDIFF = (V1-V2-V3+V4)/U0; % exact normalised diffracted fields 
UhnDIFF = (V1-V2+V3-V4)/U0; % exact normalised diffracted fields 
BWsnDIFF = UsnDIFF*sqrt(2*pi*kr)/exp(1i*kr); % diff coeff for soft BCs 
BWhnDIFF = UhnDIFF*sqrt(2*pi*kr)/exp(1i*kr); % diff coeff for hard BCs   
BWsnDIFF = conj(BWsnDIFF/sqrt(2*pi*k)) 
BWhnDIFF = conj(BWhnDIFF/sqrt(2*pi*k)) 
%-------------------------------------------------------------------------- 
% Function : Vd_Int.m (calculate Vd integral on deformed contour  ) 
function result = Vd_Int(beta,ro,ro0,nu,k)  
    eps = 1e-12;     d = 1e-3; % step size of the integration 
    Mmax = 5000; y0 = min(pi,abs(beta));  fun = 1e6;  x = y0-0.01;  
      while ( abs(fun)>eps )  % controlling maximum x value       
        z = x+1i*(y0-0.01);  R_it = sqrt(ro*ro+ro0*ro0+2*ro*ro0*cos(1i*z)); 
        fun = besselh(0,1,k*R_it)./(cosh(z/nu)-cos(beta/nu));  x = x+0.2; 
      end 
      xmax = x;  tan_teta = (y0-0.01)/xmax; % slope of the deformed contour 
      x = 0:d:xmax;  z1 = x+1i*x*tan_teta;  % deformed contour 
      R_it_1 = sqrt(ro*ro+ro0*ro0+2*ro*ro0*cos(1i*z1)); 
      fun1 = sin(beta/nu)*besselh(0,1,k*R_it_1)./(cosh(z1/nu)-cos(beta/nu)); 
      y1 = trapz(z1,fun1);    result = (y1)/(2*pi*nu);    

 
Table 4: Code of the UTD method 
phi0 = -ang0; n = (alfa)/pi; B = -ang; phi = B;   
ksi_p = phi+phi0; ksi_m = phi-phi0; % ksi+ and ksi- 
Npp = (pi+ksi_p)/(2*pi*n); Npm = (pi+ksi_m)/(2*pi*n);  % N+  
Nmp = (-pi+ksi_p)/(2*pi*n); Nmm = (-pi+ksi_m)/(2*pi*n); % N-  
m = 0; U0 =  besselh(0,1,kr0); coeff = exp(-1i*pi/4)/(2*n*sqrt(2*pi*k)); 
if (Npp<1) || (Npm<1) , Npp = 0; Npm = 0; 
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elseif (Npp>=1) || (Npm>=1), Npp = 1; Npm = 1; 
end 
if (Nmp<0) || (Nmm<0), Nmp = -1; Nmm = -1; 
elseif (0<=Nmp<1) || (0<=Nmm<1), Nmp = 0; Nmm = 0; 
elseif (Nmp>=1) || (Nmm>=1), Nmp = 1; Nmm = 1; 
end 
gpp = 1+cos(ksi_p-2*n*pi*Npp);  gpm = 1+cos(ksi_m-2*n*pi*Npm); 
gmp = 1+cos(ksi_p-2*n*pi*Nmp); gmm = 1+cos(ksi_m-2*n*pi*Nmm); 
x1 = k*r*r0*gpm/(r+r0); x2 = k*r*r0*gmm/(r+r0);  
x3 = k*r*r0*gpp/(r+r0); x4 = k*r*r0*gmp/(r+r0);  
F1 = Fresnel_Int(x1); F2 = Fresnel_Int(x2); F3 = Fresnel_Int(x3);  
F4 = Fresnel_Int(x4);   
UsDIFF_UTD = -coeff*(cot((pi+ksi_m)/(2*n))*F1+cot((pi-
ksi_m)/(2*n))*F2... 
  -cot((pi+ksi_p)/(2*n))*F3-cot((pi-ksi_p)/(2*n))*F4); % coeff for soft BCs 
UhDIFF_UTD = -coeff*(cot((pi+ksi_m)/(2*n))*F1+cot((pi-
ksi_m)/(2*n))*F2... 
  +cot((pi+ksi_p)/(2*n))*F3+cot((pi-ksi_p)/(2*n))*F4); % coeff for hard BCs 
Us_UTD=UsDIFF_UTD*sqrt(2*pi*k); 
Uh_UTD=UhDIFF_UTD*sqrt(2*pi*k); 
% -------------------------- Total Field for UTD ------------------------- 
if (ang >= 0) && (ang < pi-ang0)   % -------- Region I ------- 
    R1=sqrt(r*r+r0*r0-2*r*r0*cos(phi-phi0)); 
    R2=sqrt(r*r+r0*r0-2*r*r0*cos(phi+phi0)); 
    Uxs=besselh(0,1,k*R1)-besselh(0,1,k*R2); 
    Uxh=besselh(0,1,k*R1)+besselh(0,1,k*R2); 
    UsTOTAL_UTD = UsDIFF_UTD+Uxs/U0; 
    UhTOTAL_UTD = UhDIFF_UTD+Uxh/U0; 
elseif  (ang >= pi-ang0) && (ang < pi+ang0)   % -------- Region II ------- 
    R1=sqrt(r*r+r0*r0-2*r*r0*cos(phi-phi0)); Ux=besselh(0,1,k*R1); 
    UsTOTAL_UTD = UsDIFF_UTD+Ux/U0; 
    UhTOTAL_UTD = UhDIFF_UTD+Ux/U0; 
elseif (ang >= pi+ang0) && (ang <= alfa)  % -------- Region III ------- 
    UsTOTAL_UTD = UsDIFF_UTD; UhTOTAL_UTD = UhDIFF_UTD; 
end 
Us_UTD = Us_UTD/sqrt(2*pi*k) 
Uh_UTD = Uh_UTD/sqrt(2*pi*k) 
%-------------------------------------------------------------------------- 
% Function : Fresnel_Int.m  (Fresnel integral)   
function result = Fresnel_Int(x) 
Ml = 0.3;  Mu = 5.5; coeff = 2*1i*sqrt(x)*exp(1i*x); 
if (x < Ml) 
result = exp(1i*(pi/4+x))*(sqrt(pi*x)-2*x*exp(1i*pi/4)-(2/3)*x*x*exp(-
1i*pi/4)); 
elseif (x > Mu) 
    result = 1+1i/(2*x)-3/(4*x^2)-15*1i/(8*x^3)+75/(16*x^4); 
else 
    eps = 1e-12;  Mmax = 5000;  d = 1e-3;  y_old = 1e6; ii = 0; 
    for M=sqrt(x)+1:Mmax 
    ii = ii+1; t1 = sqrt(x):d:M; t2=0:d:M-sqrt(x);  t = t1-1i*t2; 
    fun = exp(-1i*t.*t); y(ii) = trapz(t,fun);  error = abs(y(ii)-y_old); 
    y_old = y(ii); 
    if (error<eps) , result = y(ii)*coeff;  break; 
    else continue 
    end 
    end 
    result = y(ii)*coeff; 
end 

 
Table 5: Code of the PE diffraction method 
n = alfa/pi; rho=r*r0/(r+r0); m=0; krho=k*rho; psi = ang-ang0;  
w1 = Int_calcPE2(alfa,krho,psi)*exp(1i*(krho+pi/4))/(pi*sqrt(2));  
psi = ang+ang0; 
w2 = Int_calcPE2(alfa,krho,psi)*exp(1i*(krho+pi/4))/(pi*sqrt(2));  
Ws=(w1-w2)*exp(-1i*krho); Wh=(w1+w2)*exp(-1i*krho); 
Us_PE = Ws*sqrt(r0/(r0+r))*exp(1i*kr); % normalized PE diff field -soft 
Uh_PE = Wh*sqrt(r0/(r0+r))*exp(1i*kr); % normalized PE diff field -hard 
PEs_DiffCoeff = Us_PE*sqrt(2*pi*kr)/exp(1i*kr); 
PEh_DiffCoeff = Uh_PE*sqrt(2*pi*kr)/exp(1i*kr); 
PEs_DiffCoeff = conj(PEs_DiffCoeff)/sqrt(2*pi*k) 
PEh_DiffCoeff = conj(PEh_DiffCoeff)/sqrt(2*pi*k) 
%-------------------------------------------------------------------------- 
% Function : Int_calcPE2.m 
function result = Int_calcPE2(alfa,kr,psi)  
  eps = 1e-12; n = alfa/pi; y_old = 1e6; result = 0; 
  for M=1:100 
    s = -M:0.0001:M;  eta=sqrt(2).*s.*exp(-1i*pi/4); 
    F2 = (1/n).*sin(pi/n)./(cos(pi/n)-cos((eta+psi)/n)); 
    fun = exp(-kr*s.*s).*F2; 

    y(M) = trapz(s,fun); error = abs(y(M)-y_old); y_old = y(M); 
    if (error<eps) , result = y(M);  N = M; break; 
    else, continue 
    end 
  end 
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