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Abstract ─ The robustness of the microwave 
tomography method based on frequency 
dependent finite difference time domain numerical 
method and hybrid genetic algorithm for breast 
cancer imaging for different levels of noise are 
investigated in this paper. These results indicate 
the algorithm performs well in the case of data 
contaminated by various levels of additive white 
Gaussian noise (up to 15 % of signal strength). 
Noise levels above this value inhibit the efficacy 
of the method. 

 
Index Terms ─ Breast cancer imaging, 
heterogeneous and dispersive breast tissue, inverse 
scattering problem, microwave tomography, and 
penetration depth for different breast types. 

 
I. INTRODUCTION 

Microwave tomography (MWT) is the process 
of creating an image based on dielectric 
properties’ map from measured electric field 
qualities. The dielectric properties and measured 
field are related by a non-linear relationship that is 
modeled by Maxwell’s equations. Inverse 
scattering problem, is the process to determine the 
physical quantities of the media from the 
knowledge of the electric field at a set of receiver 
points outside the scatterer, and knowledge of the 
source. Applications include non-destructive 
testing and medical imaging. In spite of the efforts 
and research in the field of inverse scattering 
problem, still many important analytical and 
computational challenges have remained 

untouched. Therefore, further efforts are necessary 
to allow their massive employment in real 
applications. From a computational point of view, 
the heterogeneous and dispersive media cause a 
high computational load. Most of the existing 
algorithms are very effective when the object 
under the test is simple. But for applications with 
complicated structures (such as biomedical 
imaging, which has a high degree of heterogeneity 
and high dielectric properties contrast), they may 
lead to non-real solutions. To deal with these 
complicated objects, we chose to make no 
simplification in the non-linear Maxwell’s 
equations. Recently, the authors developed the 
numerical simulation method based on frequency 
dependent finite difference time domain 
((FD)2TD) and genetic algorithm (GA) for 
detecting breast cancer [1]. In this paper, the 
effectiveness of the proposed MWT approach is 
assessed by means of a numerical example (for 
breast cancer application) concerning a realistic 
cross-section of a phantom exposed to an 
electromagnetic illumination. In MWT imaging 
technique, the penetration depth plays an 
important role. Hence, we first analyze the 
penetration depth of the microwave signal in the 
breast tissue using anatomically realistic numerical 
breast phantoms. Then, the proposed microwave 
tomography technique is applied to a numerical 
breast phantom with an inhomogeneous scatterer 
profile, and the map of dielectric properties inside 
the breast phantom is reconstructed. The presence 
of noise in the synthetic data is also considered
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Fig. 1. Block diagram of the proposed MWT method. 

 
and the dependence of the reconstruction accuracy 
on the signal-to-noise ratio (SNR) is investigated. 
The paper is organized as follows. In section II, 
the methodology for the proposed MWT system is 
explained. In section III we discuss MWT for 
breast cancer detection and penetration depth for 
different types of breast phantom is calculated. 
Section IV discusses the inversion results for the 
synthetic data and in section V we discuss the 
inversion results where noise is present. 

 
II. METHODOLOGY  

Figure 1 shows the block diagram of the 
proposed MWT method in [1]. The proposed 
MWT technique requires a priori information 
about object of interest (OI), imaging domain, 
background medium, and measured scattered field 
from an OI as well as a reference object. As can be 
seen in this figure, the quality of the images 
depends on the accuracy of a priori information, 
accuracy in measured fields, and forward and 
inverse algorithms. A priori information include 
information about scatterer, background medium, 
positions of the transmitter and receiver antennas, 

and scattered field of a known object for 
calibration purpose. 

 
III. MICROWAVE IMAGING FOR 
BREAST CANCER DETECTION 

In recent years, microwave imaging has 
attracted significant interest for biomedical 
applications in general and as an alternative or 
complementary method to X-ray mammography 
for breast imaging in particular. This method relies 
on the contrast between the electrical properties of 
tumor and those of normal tissue. Microwave 
breast imaging techniques can be divided into 
three main categories: passive [2], hybrid [3], and 
active methods [1]. In active imaging approaches, 
the patient lies in the prone position and the 
transmitter and receiver antennas are located 
around the breast. A transmitter antenna is fixed at 
the specific radius from the breast and transmits a 
signal; the scattered field is collected by receiver 
antennas around the breast at a specific radius 
while they are at the same plane of transmitter 
antenna. This imaging method uses energy at 
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Fig. 2. 3D map of relative permittivity at 5 GHz for (a) mostly fatty, (b) scattered fibro-glandular, (c) 
heterogeneously dense, and (d) very dense breast type (generated from MRI data in [4]). 

 
microwave frequency range to penetrate into the 
body and retrieve structural and functional 
information about the tissues via the scattered 
waves. Due to the difference between the 
dielectric properties of the normal and malignant 
tissues, a scattered electromagnetic field, 
corresponding to each incident field, will arise 
which is then measured outside the breast and used 
to find the shape, location, and dielectric 
properties of the normal and malignant tissue. 

 
A. Numerical breast phantom 

For simulating the breast, in this paper, we 
used a numerical breast phantom derived from 
magnetic resonance images (MRI). Figure 2 
depicts maps of dielectric properties for the spatial 
distribution of media numbers for different breast 
types in terms of X-ray mammography 
descriptors: mostly fatty, scattered fibro-glandular, 
heterogeneously dense, and very dense. These 
were derived from a series of T1-weighted MRIs 
of the patient in a prone position, provided by the 
University of Wisconsin-Madison [4]. Figure 2 
(a), (b), (c), and (d) show the corresponding 

dielectric map. Each phantom contains three 
variations of both fibro-glandular and a adipose 
tissues, as well as transitional tissues. Dimensions 
within the 3D region of the breast are described 
according to each axis. The z-axis signifies the 
depth, and the x and y-axes represent the span and 
breadth of the breast, respectively. In order to 
create the dielectric properties map from the MRI, 
the range of MRI pixel densities in the breast 
interior have been linearly mapped to the range of 
the percentage of water content and to tissue type, 
such as skin, muscle, fatty, fibro-glandular, and 
transitional, for each voxel. Figure 3 shows the 
cross-sectional view in the x-y plane of tissue 
types for different breast phantoms in terms of X-
ray descriptors. The color bar in this figure 
indicates the different tissue types; the red color 
shows the fatty tissue, the orange color shows the 
transitional tissue, the yellow color shows the 
fibro-glandular tissue, and the dark blue represents 
the skin, while the medium blue color represents 
the immersion medium. Figure 4 shows the cross-
sectional view in the x-y plane in terms of water 
content for four types of breast phantoms. The 
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breast phantoms and how the amount of fibro-
glandular tissue changes in these four types of 
breast tissue, we performed a data analysis. In an 
image of permittivity, each pixel of image has a 
value of permittivity ranging from 0 to 70. To 
calculate histograms of permittivity, the total 
number of pixel that fall into each value of 
permittivity, divided by the total number of pixels. 
Figure 5 shows the histogram of the permittivity 
for different numerical breast phantoms at 5 GHz. 
 

 
 

(a) 
 

 
 

(b) 
 

 
 

(c) 

 
 

(d) 
 

Fig. 5. The histogram of the permittivity for 
different numerical breast phantoms at 5 GHz (a) 
mostly fatty, (b) scattered fibro-glandular, (c) 
heterogeneously dense, and (d) very dense. 

 
All the analysis is conducted at the cross-

section 4 cm away from the nipple. Several 
observations can be drawn from these graphs. 
First, as we move from mostly fatty to the very 
dense breast phantom, the percentage of fatty 
tissue decreases, and the percentage of fibro-
glandular tissue increases. Second, each breast 
phantom almost covers the entire range of 
dielectric constants from 0 to 70, and furthermore, 
the distribution of dielectric constants is not 
uniform. 

 
B. Penetration depth 

The principal limiting factor in penetration 
depth of the microwave is attenuation of the 
electromagnetic wave in the breast tissues. The 
attenuation predominantly results from the 
conversion of electromagnetic energy to thermal 
energy due to the high conductivities of the skin 
and breast tissue at high frequencies. Figure 6 
illustrates that the conductivities of the skin, the 
fibro-glandular tissue, and the malignant tumor 
increase by increasing the frequency with a 
constant amount of water. In this section, we focus 
on the investigation of the penetration depth of the 
microwave pulse into the numerical breast 
phantom, and we compare the scattered fields for 
each case of Fig. 2. The penetration depth is the 
distance that the propagation wave will travel 
before the power density is decreased by a factor 
of 1/e. The absorbed power density is given by, 
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2

totalAbsorb power density E
2

average
     (1) 

where σaverage is the average of conductivity for 
breast tissues and Etotal is the total field. In order to 
calculate the penetration depth, we used 2D 
(FD)2TD that includes the water content [5, 6]. 
The (FD)2TD is an extended version of the 
conventional finite difference time domain 
(FDTD) that incorporates the Debye model into 
the difference equations and can handle dispersive 
materials more accurately [7]. The breast model is 
based on an MRI data taken from the breast 
phantom repository [4] as explained in section III-
A. Each cell of the (FD)2TD contains its own 
tissue type and percentage of water content. For 
the study of the penetration depth, the breast is 
surrounded by free space. Figure 7 shows the 
depth of penetration as a function of frequency for 
different types of numerical breast phantoms. 
 
 

 
 

Fig. 6. Frequency variation of conductivity for 
different breast tissues with 50 percent water 
content based on Debye model. 
 
 

As can be seen in this graph, the 1/e depth of 
penetration is different for each case. This is due 
to different tissue compositions in different types 
of numerical breast phantoms. The penetration 
depth inside the dispersive lossy biological media 
decreases as the frequency increases. Therefore, 
employing higher frequencies to obtain better 
resolutions and improved imaging accuracy 
remains a challenge. 
 

 
 

Fig. 7. The 1/e penetration depth versus frequency 
for different breast phantoms. 

 
 

IV. INVERSION RESULTS FOR BREAST 
CANCER DETECTION 

In order to show the ability of the proposed 
method in terms of resolution, the breast phantom 
derived from MRI [4] data with a 7 mm resolution 
has been selected. Cross-sectional maps of the 
dielectric constant and effective conductivity 
distribution at 5 GHz for a “heterogeneously 
dense” breast phantom are shown in Fig. 8. The 
physical diameter of the breast phantom is 
approximately 8 cm. The phantom contains 
different tissue types ranging from the highest 
water content (fibro-glandular) tissue to lowest 
water content (fatty) tissue, and also a transitional 
region with various water content levels. 
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(b) 
 

Fig. 8. Map of (a) permittivity and (b) conductivity 
of the heterogeneously dense breast phantom. 

 
Figure 9 shows the map of the dielectric 

properties at 7 mm resolution of the numerical 
breast phantom shown in Fig. 8. A 7 mm square-
shaped tumor was inserted inside the fibro-
glandular tissue for the phantom used in the FDTD 
model. The tumor is placed at a x = 60 cm and y = 
80 cm position. The breast is surrounded by the 
free space. In the examples considered herein, the 
following parameters have been used. 100 
observation points are uniformly distributed 
around the investigation domain. A (Transverse 
Magnetic) TMz Gaussian plane wave successively 
illuminates the breast and penetrates in the 
investigation domain, and the scattered fields are 
measured at the observation points around it. To 
enhance the accuracy of the image and reduce the 
ill-posedness of the inverse problem, the 
procedure is repeated for four different incident 
angles (0o, 90o, 180o, and 270o). In these examples 
the measurement data is replaced by hypothetical 
simulated data obtained by running a forward 
simulation using (FD)2TD with a 0.1 mm 
resolution. To prevent the inverse crime, a 0.5 mm 
resolution mesh has been used for the inverse 
solver. Equation 2 shows the fitness-function used 
in the GA optimization, 
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(2)  

The tmeasuremen
fiE ,,  is the measured scattered 

electric field, simulation
fiE ,,  is the estimated scattered 

field obtained by performing a forward simulation, 
M is the number of observation points, T is the 
total number of illumination angles, and ϕ is an 
index to angle of the observation point from the 
axis of the incident wave. f refers to different 
sampling frequencies within f1 and f2.  

 

 
 

(a) 
 

 
 

(b) 
 

Fig. 9. Map of the (a) permittivity and (b) 
conductivity of the heterogeneously dense breast 
with 7 mm resolution. 
 

Note that the data at each frequency are 
equally weighted in the inversion process. As a 
proof of concept, we have considered the noise-
less scenario for the first example and in the 
second example the effect of the noise in inversion 
results is investigated. 

 
A. Optimization procedure 

In the GA program, the enclosed scattering 
region (inside the breast) is discretized into a 
number of small patches (7×7mm2). We assumed 
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that the location of the skin is known and can be 
found using skin detection technique [8]. Then the 
GA optimization starts from a homogeneous fatty 
tissue background and fills in some patches of 
possible materials inside the area and try to find a 
set of dielectric properties of the material for those 
patches that can generate the same scattered fields 
as the hypothetical simulated data.  

The reconstruction algorithm consists of a 
combination of a binary and areal GA [9]. The GA 
optimization is divided into two steps. At the first 
step, the binary genetic algorithm (BGA) is 
employed in order to determine the type of the 
tissue for each patch. In the second step, by using 
real genetic algorithm (RGA) for the candidate 
solutions the search is performed for the right 
amount of water content. In the BGA, the look-up 
table consists of first order Debye parameters for 
four different tissue types: fibro-glandular, fatty, 
transitional, and malignant tissues with 50 percent 
water content given in Table 1 [10, 11].  

 
Table 1: Look-up table of the Debye parameters 
for the BGA. 

Medium  Fat Transitional  Fibro-
glandular  

Malignant 
Tumour  

ε∞ 4.33 22.46  52.020 76.170 

εs 2.98 8.488  14.000 25.520 

σs(S/m) 0.02 0.230 0.780 1.200 
τ

0
(ps) 13.0 13.00 13.00 13.00 

 
For each patch, a two bit identifier can 

designate it as one of four types of tissue. In BGA 
the chromosome is expressed as a binary string. 
Therefore, the search space of the considered 
problem is mapped into a binary space. After 
reproducing an offspring, a decoder mapping is 
applied to the look up table to map them back to 
real space in order to compute their fitness-
function values. The optimizing parameter here is 
the type of breast tissue for each patch of search 
space. The BGA program stops when the average 
quality of the population does not improve after a 
number of generations. The best individuals of the 
last generation of BGA are passed to the second 
step, which is RGA. For the RGA, the look-up 
table consists of first order Debye parameters from 
the upper to lower end of the range for four the 
same types of breast tissue with various water 
content levels (Table 2) [10, 11].  

Table 2: Look-up table of the Debye parameters 
for the RGA. 

Medium  Fat Transitional  Fibro-
glandular  

Malignant 
Tumour  

∞u 3.987 12.990  23.200  9.058 

su 7.535 37.190  69.250  60.360 

σsu(S/m) 0.080 0.397  1.306  0.899 

∞l 2.309 3.987  12.990  23.200 

sl 2.401 7.535  37.190 69.250 

σsl(S/m) 0.005 0.080  0.397  1.306 

τ0(ps)  13.00 13.00 13.00 13.00 
 
RGA optimizes the percentage of water 

content. Including the percentage of water content 
into the Debye model has been discussed in 
reference [5]. The result of BGA is a map of the 
dielectric properties inside the breast phantom 
(assuming 50 % water content) and for the RGA is 
the water content of that tissue. It is worth 
mentioning that the GA programs are not 
guaranteed to converge to the optimal solution, but 
by using RGA and looking at the behavior of the 
best fitness values at different generations for each 
individual of those possible solutions obtained by 
BGA, one can choose a population that is adequate 
to the problem and thus increase the chance of 
success. Figure 10 shows the reconstructed image 
of permittivity and conductivity. Transects of the 
reconstructed permittivity and conductivity at 5 
GHz in the horizontal direction at line y = 80 cell 
and x = 64 cell, compared with the actual 
distribution, are shown in Fig. 11.  

 
 

 
 

(a) 
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(b) 
 

Fig. 10. Reconstructed image of (a) permittivity, 
and (b) conductivity for the breast phantom of Fig. 
9. 

 

 
 

(a) 
 

 
 

(b) 
 

Fig. 11. Transects of the reconstructed permittivity 
image at (a) y = 80 cell horizontal direction and (b) 
x = 64 cell vertical direction profiles compared 
with the actual distribution. 

 
One observation apparent in these images is 

the small degree of inaccuracy in the recovered 

permittivity and conductivity compared with the 
actual profile, since the percentage of water 
content, which affects dielectric properties, is not 
precisely known. However, the estimated 
percentage of water content is within the range for 
each tissue type to recognize the right tissue 
composition. 

 
V. HGA/FDTD IN THE PRESENCE OF 

NOISE 
Background noise is always present in any 

measurement and it must be taken into account. 
This is particularly important in biomedical 
applications, since for safety reasons, it is not 
possible to increase the energy of the incident field 
to overshadow the background noise. It is shown 
in this section that the proposed method is efficient 
and provides adequate accuracy even when the 
signal to noise ratio (SNR) is low. SNR is defined 
by [12] 

S 10log ,s

n

P
NR

P

 
  

 
                    (3) 

in which Ps is the total power of the scattered field 
and is proportional to 


2

1

f

f

2

z .E 
2

1
sP                       (4)              

The symbol Ez is the scattered field at the different 
frequencies within f1 - f2 range, and Pn is the noise 
power. Figure 12 shows the tumor response for 1 
cm tumor (Fig. 12 (a)) and 5 mm tumor (Fig. 12 
(b)) while the data is contaminated with different 
levels of noise (SNR = 10, 20, 30, and 40 dB) for 
different types of breasts such as scattered fibro-
glandular breast, heterogeneously dense breast, 
and very dense breast at 5 GHz. As can be seen in 
this figure the strength of tumor response for the 
scattered fibro-glandular breast is quite high 
compared to the heterogeneously dense breast and 
very dense breast. Because, the amount of the 
fibro-glandular tissue (which is a lossy material) in 
heterogeneously dense breast and very dense 
breast is significantly large. We artificially added 
some noise to the signal to mimic the existing 
noise in measurement setup. Figure 12 shows that 
for the scattered fibro-glandular breast by adding 
different level of noise the signal intensity is still 
well above the noise floor. However, for the very 
dense breast, due to small signal strength, it will 
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be difficult to distinguish between the signal and 
noise. We did not provide the results of mostly 
fatty breast here. Generally the tumor response for 
this type is stronger than all other breast. 
 
 

 
 

(a) 
 

 
 

(b) 
 

Fig. 12. Tumor response for diverse SNR and 
different breast types and tumor size with diameter 
(a) 1 cm and (b) 5 mm. 
 
 
 The 2 mm tumor response without noise for 
the heterogeneously dense breast and very dense 
breast are compared with the response of 1 cm and 
5 mm tumors and are shown in Fig. 13. Table 3 
also shows the maximum tumor response for the 
heterogeneously dense breast and very dense 
breast. As can be seen, the tumor response for the 
2 mm tumor in heterogeneously dense breast is 
even higher than the response from 1 cm tumor in 
very dense breast. 
 

 
 

Fig. 13. Tumor response for 1 cm, 5 mm and, 2 
mm diameter tumor sizes for the heterogeneously 
dense breast and very dense breast. 

 
Table 3: Maximum tumor response. 

Tumour size 1cm 5mm 2mm 
Heterogeneously 

dense breast 
0.199 0.108 0.128 

Very dense 
breast 

0.063 0.041 0.009 

 
Therefore, detecting the small tumor becomes 

difficult as the amount of the fibro-glandular tissue 
increases in the breast. Therefore, the detectable 
tumor size depends on the breast type and SNR. 
Here, we investigated the performance of the 
proposed method at different SNR levels. Figure 
14 shows the block diagram of the process of 
adding the noise to the measurement signal. 

 
 
 
 
 
 
 
 

 
 
 
 
Fig. 14. Block diagram of adding noise in the 
proposed tomography method. 

 
After recording the scattered fields at the 

observation points by using the (FD)2TD solver, 
an additive white Gaussian noise was added to 
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simulate the instrument noise, which can present 
in real measurements. The HGA optimization 
technique was then used to reconstruct the 
dielectric property map of the breast tissue inside 
the numerical breast phantom. Background noise 
generally considered as white noise, due to having 
an almost a constant power spectral density [12]. 
Figure 15 (a) shows the histogram of white noise. 
Figure 15 (b) shows the amplitude of white noise 
for each antenna at the observation point at 5 GHz. 
Figure 15 (c) presents the power spectral density 
of the white Gaussian noise for each antenna. The 
white noise was artificially added to all 
measurements of the scattered field at different 
frequencies in such a way that the power of noise 
was constant at all frequencies, but the power of 
the noise changed randomly with Gaussian 
distribution at each observation point.  
 
 

 
 

(a) 
 
 

 
 

(b) 

 
 

(c) 
 

Fig. 15. (a) Histogram plot of the added white 
noise, (b) amplitude of white noise for each 
antenna at the observation point, and (c) power 
spectral density of the white Gaussian noise. 
 

To illustrate the ability and robustness of the 
proposed HGA method, we added different levels 
of noise to the scattered field of the breast 
phantom of Fig. 9 by using the process shown in 
Fig. 14. Figures 16 (a) and (b) show the average 
error of the dielectric constant and conductivity 
versus SNR, respectively. These errors are 
averaged over the differences between the actual 
and the reconstructed permittivity and 
conductivity shown in equations (5) and (6), 
respectively, 
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(  ) (  )
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f
r reconstracted image r real imagei j
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 






 
      (5)

2

1

(  ) (  )

Average  error in conductivity

,
number of cells

f
reconstracted image real imagei j

f

 






 
      

(6) 

 

where f1 and f2 refer to different frequencies of 
reconstruction and i and j are the cell numbers in 
the x and y directions, respectively. These figures 
demonstrate that as the SNR decreases (noise level 
increases), the average error increases. It was 
observed that the proposed method still can find 
the tissue types of the heterogeneous structure 
even when the SNR is 23 dB, which is equivalent 
to 15 % background noise. When the background 
noise is greater than 15 %, the optimization 
program did not converge.  
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Fig. 16. The average error in (a) dielectric constant 
and (b) conductivity versus SNR. 

 
 

 It was also noticed that by increasing the noise 
level, the optimization time for convergence was 
significantly increased. The same procedure of 
adding noise was repeated for the mostly fatty 
breast. As indicated in Fig. 16, the average error of 
permittivity and conductivity are less, compared to 
heterogeneously dense breast with the same SNR. 

 
VI. CONCLUSION 

In this paper we studied the noise effects on 
(FD)2TD/GA algorithm for solving the inverse 
scattering problem for heterogeneous and 
dispersive objects. We presented an accurate 
simulation model for the breast cancer detection 
that considers the heterogeneity, dispersive 
characteristics, and the water content of the breast. 
Further, we calculated the penetration depth for 
different tissue compositions of breast phantoms 
categorized as: mostly fatty, scattered fibro-
glandular, heterogeneously dense and very dense. 

We have presented the results of inversion and the 
effect of noise on the accuracy of proposed 
microwave tomography method. The simulation 
results illustrate that the proposed method is 
capable of detecting lesions in environments 
where they are surrounded by fibro-glandular 
tissue, which happens in most cases of breast 
cancer. We used 7 mm resolution for GA. Higher 
resolution images of the realistic phantom can be 
obtained by reducing the discretization unit size, 
which result in a longer run time. In this paper the 
breast cancer detection is chosen as a primary 
application to investigate the capabilities of the 
proposed technique due to the heterogeneous 
structure and dispersive characteristic of the 
breast. However, the proposed technique can be 
applied to many other applications. 
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