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Abstract ─ An analytic solution to the problem of 
scattering of a plane electromagnetic wave by a chirally 
coated elliptic cylinder defined by PECM boundary 
condition has been obtained by expanding the different 
electromagnetic fields in terms of appropriate elliptic 
wave functions and a set of expansion coefficients. The 
expansion coefficients associated with the transmitted 
field inside the coating as well as the scattered field 
outside the coating are unknown and will be obtained by 
applying the boundary conditions at various layers. 
Numerical results have been presented graphically to 
show the effects of chiral and PEMC materials 
simultaneously on the bistatic width of scattering from 
coated elliptic cylinder. 
 
Index Terms ─ Bistatic, chiral, elliptic cylinder, Mathieu 
functions, PEMC. 
 

I. INTRODUCTION 
Since the introduction of PEMC materials in 2005 

[1], there has been a lot of research into scattering from 
different types of both two- and three-dimensional 
PEMC objects [2-12]. This has recently led to an interest 
on research involving coated PEMC objects [13-14]. As 
described in [1], a PEMC medium is a generalized form 
of a perfect electric conducting (PEC) and a perfect 
magnetic conducting (PMC) medium in which certain 
linear combinations of electromagnetic fields become 
extinct [15], and is definable by a single real-valued 
parameter known as the PEMC admittance. A null 
admittance corresponds to a PMC medium and an 
admittance of infinity corresponds to a PEC medium, 
when the field magnitudes are finite [16]. A PEMC 
material acts as a perfect reflector of electromagnetic 
waves, but differs from PEC and PMC materials due to 
the fact that it produces a reflected wave with a cross-
polarized field component [17-22]. 

The elliptic cylinder is a geometry that has been 
extensively analyzed in the literature due to its ability to 
produce cylinders of different cross sectional shapes, by 

changing the axial ratio of the ellipse. Moreover, since 
the elliptic cylindrical coordinate system is one of the 
coordinate systems in which the wave equation is 
separable, solutions to problems involving elliptic 
cylinders can be obtained in closed form. 

In this paper, we present the analysis corresponding 
to the scattering from a chiral coated PEMC elliptic 
cylinder of arbitrary axial ratio, when it is excited by 
either a plane wave of arbitrary polarization and angle of 
incidence. Such solution is valuable, since it can be used 
for validating solutions obtained using other methods. 
The analysis and the software used for obtaining the 
results have been validated by calculating the normalized 
scattering widths for a PEMC coated elliptic [22] when 
it is illuminated by a plane wave. It was shown 
graphically that these results are in very good agreement 
with the corresponding results obtained using various 
values of admittances for coated PEMC elliptic cylinder. 
 

II. FORMULATION 
Consider a linearly polarized uniform plane 

electromagnetic wave arbitrarily incident on an infinitely 
long PEMC elliptic cylinder confocally coated with a 
chiral material. The semi-major and semi-minor axis 
lengths of the uncoated cylinder are denoted by 0 0and ,a b
and those of the coated cylinder are denoted by and ,c ca b  
respectively. The coated cylinder is assumed to be 
located in free space, with the incident wave making an 
angle i/  with the negative x-axis of a Cartesian 
coordinate system as shown in Fig. 1. It is beneficial to 
define the x and y coordinates of the Cartesian coordinate 
system in terms u, v, z of an elliptical coordinate system 
where cosh cos ,x F u v� sinh sin ,y F u v� with F being 
the semi-focal length of the ellipse. A time dependence 
of exp( )j t)  with )  being the angular frequency, is 
assumed throughout the analysis, but suppressed for 
convenience. The analysis is conducted for an incident 
uniform plane wave of transverse magnetic (TM) 
polarization. The analysis corresponding to a plane wave 
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of transverse electric (TE) polarization can be obtained 
from that for a plane wave of TM polarization, using 
duality. 
 

 
 
Fig. 1. Geometry of the chiral coated PEMC elliptic 
cylinder. 
 

Considering a TM polarized arbitrarily incident 
plane wave of unit amplitude, we can expand the incident 
electric field component as [23]: 
 (1)

,
( , ) ( , ),inc

z qn qn qn
q n

E A R c S c %��  (1) 

where ( ) ( , )i
qnR c  and ( , )qnS c % are the i-th order of the 

radial and angular Mathieu functions respectively, where
,q e o� stands for even and odd solution, and 

 8 ( ,cos ),
( )

n
qn qn i

qn

A j S c
N c

* ��  (2) 

in which c kF�  with k being the wavenumber of the 
medium outside the cylinder and ( )qnN c  is the 
normalization constant associated with ( , )qnS c % . Using 
Maxwell’s equations we can expand the incident 
magnetic field component as: 

 (1)

,

1 ( , ) ( , ),inc
v qn qn qn

q n
H A R c S c

jkZh
 %0� �  (3) 

where 2 2cosh cosh F u v�  , with coshu � , 
cosv% � , Z is the wave impedance of the medium 

outside the cylinder, and the prime denoting the 
differentiation with respect to u. 

Since the cylinder comprises of a PEMC material, 
the scattered field consists of both co- and cross-polar 
components. These can be expanded as: 
 (4)

,
( , ) ( , ),s

z qn qn qn
q n

E B R c S c %��  (4) 

 (4)

,

1 ( , ) ( , ),s
v qn qn qn

q n
E C R c S c

kh
 %0�  �  (5) 

 (4)

,
( , ) ( , ),s

z qn qn qn
q n

jH C R c S c
Z

 %� �  (6) 

 (4)

,

1 ( , ) ( , ),s
v qn qn qn

q n
H B R c S c

jkZh
 %0� �  (7) 

in which qnC  and qnB  are the unknown co- and cross-
scattered field expansion coefficients. 

The fields within the chiral coating also have both 
co- and cross-polar components, comprising of left- and 
right-handed parts. These can be expanded as: 
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where , , ,qn qn qn qnD F P Q  are the unknown field expansion 
coefficients, ,R Rc k F�  ,L Lc k F�  with the wavenumbers 

Rk and Lk corresponding to the right- and left-handed 
waves inside the chiral medium given by 

, ,R L c ck ) '( )'!� 1 in which c!  is the chirality 
admittance and c(  is the effective permittivity defined 
by 2

c c( ' (!� �  with ( and ' being the permittivity and 
permeability of the chiral medium, and cZ  is the wave 

impedance in the chiral medium, given by .ccZ ' (�  
The boundary conditions at the surface c  �  of the 

coating require the continuity of the tangential 
components of the electric and magnetic fields across the 
boundary. These can be written mathematically as: 
 ,c i s

z z zE E E� �  (12) 

 ,c i s
v v vE E E� �  (13) 

 ,c i s
z z zH H H� �  (14) 

 .c i s
v v vH H H� �  (15) 

Similarly, the boundary conditions at the surface 
s  �  of the PEMC elliptic cylinder can be written 

using the PEMC admittance M as: 

 � s  � c 

a0 

y 

x b0 ac 

bc 
�i 
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Substituting for the electric field components in (12)-
(13) in terms of their respective expansions, we get: 
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Substituting for the magnetic field components in (14)-
(15) in terms of their respective expansions yields: 
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Substituting for the field components in (17) and (18) in 
terms of their expansions, we get: 
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If both sides of equations (18)-(23) are multiplied by
( , )qnS c %  and integrated over %  from -1 to 1, then 

considering the orthogonality of the angular Mathieu 
functions, we can write these equations after a 
rearrangement as: 
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for ,R L2 � . Writing the system of equations (24)-(29) 
in matrix form and the solution by matrix inversion 
yields the unknown coefficients associated with the 
scattered and transmitted fields. 
 

III. NUMERICAL RESULTS 
In the limit ,34  since 5 kc 4  with 5  being 

the radial cylindrical coordinate, using asymptotic 
expressions, the radial Mathieu function of the fourth 
kind and its first derivative with respect to argument can 
be written as: 

 ,),(lim )4( 5
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Using (31) and the fact that in the limit ,34 
,cosh 5kukFkh 64  we can write expressions for 

the scattered electric field components in the far zone as: 
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and the scattered magnetic field components as
s s
zH E Z/� and .s s

zH E Z/ �   
The bistatic scattering cross section is defined as: 
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with ]Re[w  denoting the real part of the complex 
number w, the asterisk denoting the complex conjugate, 
and ρ̂  denoting the unit vector in the increasing radial 
direction. Substituting for the far zone scattered fields in 
(34), and recalling that the incident field is of unit 
amplitude, an expression for the normalized bistatic 
width can be written as: 
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It can be seen from equation (35) that the uniqueness of 
PEMC material over PEC and PMC materials it has both 
co and cross-polarized field components. 

Results obtained are presented graphically as 
normalized bistatic width for chiral coated PEMC 
elliptic cylinders of different sizes, PEMC admittances, 
and chiral coatings, with all coated cylinders assumed to 
be located in free space. For convenience, the PEMC 
admittance M is expressed in terms of the dimensionless 
quantity MZ1, using the formula MZ1=tan(υ), so that 
υ=0o and υ=90o correspond to the PMC and PEC cases, 
respectively. 

Normalized bistatic widths of chiral coated PEMC 
elliptic cylinders obtained for different scattering angles, 
when they are illuminated by a plane wave incident at 0o, 
are shown in Fig. 2. The geometrical parameters of the 

scatterer are a=0.4λ, b=0.2λ, ac=0.56λ, bc=0.44λ, and the 

coating values are εrc=2.5 and μrc=1.0. The admittances 
of the PEMC cylinders are specified by the parameter υ, 

which varies from 0o to 90o, in steps of 15o and chiral 
admittance is c! =0.0. 
 

 
 
Fig. 2. Normalized bistatic width versus scattering angle 
for PEMC elliptic cylinders of different admittances 
coated with εrc=2.5, μrc=1.0, i� =0o, and c! =0.0. 
 

The plots are symmetric around φ=180o as expected. 
The normalized bistatic width for a given scattering 
angle decreases as the value of υ increases, with the 

magnitude for each angle being a maximum for υ=0o 
(PMC), a minimum for υ=90o (PEC), and the differences 
for two values of υ becoming a maximum at φ=180o, 
corresponding to forward scattering. The normalized 
bistatic widths are compared with the corresponding 
values obtained for a conventional coated PEMC elliptic 
cylinder in [22], presented by circles, and are in very 
good agreement, validating the calculations for an 
elliptic cylinder in general. 

Figure 3 (a) is similar to Fig. 2, except that the chiral 
admittance is taken to be c! =0.002. This figure shows 
the effect of both PEMC and chiral coating on the bistatic 
of coated elliptic cylinder. There is a drop in the bistatic 
width by approximately of 50% at υ=0o and υ=90o, and 
no change in the location of the maximum values for 
other values of υ. It is worth mentioning that the value of 
the bistatic widths for υ=75o and 90o are the same at 
φ=180o. Figure 3 (b)  is similar to Fig. 3 (a), except c!  is 
reduced to 0.0015. It can be seen that the bistatic width 
is higher and the maximum is back at υ=0o and the 
minimum at υ=90o. The variation of the bistatic widths 
is due to the presence of the cross-polarized fields of 
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PEMC and chiral materials. 
Figure 4 is similar to Fig. 3, except that the incident 

angle is 90o. Figure 4 (a) shows that the magnitude of the 
bistatic width has maxima at υ=90o and minima at υ=0o 

and φ=90o, while the opposite is happening at the 
scattering angle of φ=270o. Figure 4 (b) is for the case of 

c! =0.0015. 
 

 
 (a) 

 
 (b) 
 
Fig. 3. Normalized bistatic width versus scattering angle 
for PEMC elliptic cylinders of different admittances 
coated with εrc=2.5, μrc=1.0, i� =0o: (a) c! =0.002, and 
(b) c! =0.0015. 
 

It can be seen that Fig. 5 is similar to 4, except by 
increasing εrc from 2.5 to 3.0. Figure 6 shows the bistatic 
widths versus the major axis of the dielectric coating for 
υ=45o and 75o and c! =0.002 and 0.0025. The presence 
of chiral material effects the magnitude but not the 
pattern of the bistatic width. More results and analysis on 
chiral coated or PEMC conventional coated elliptic 
cylinder can be found in [22,24]. 

 
 (a) 

 
 (b) 
 
Fig. 4. Normalized bistatic width versus scattering angle 
for PEMC elliptic cylinders of different admittances 
coated with εrc=2.5, μrc=1.0, i� =90o: ( a) c! =0.002, and 
(b) c! =0.0015. 
 

 
 
Fig. 5. Normalized bistatic width versus scattering angle 
for PEMC elliptic cylinders of different admittances 
coated with εrc=3.0, μrc=1.0, i� =90o and c! =0.002. 
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 (a) 

 
 (b) 
 
Fig. 6. Normalized bistatic width versus ka1 for PEMC 
elliptic cylinders of different admittances coated with 
εrc=3.0, μrc=1.0, i� =0.0o, a=0.4λ, b=0.2λ: (a) υ=45o, and 
(b) υ=75o. 
 

IV. CONCLUSION 
Analytic solution has been obtained to the problem 

of scattering from a chirally coated PEMC elliptic 
cylinder, when it is excited by a uniform plane wave. The 
solution is general since it also can provide the solution 
to the scattering by PEMC circular or strip chiral coated 
geometries. The results obtained show that the 
admittances as well as the constitutive parameters of the 
chiral coating material can be used to control (enhancing 
or reducing) the scattering width of a coated PEMC 
elliptic cylinder. Thus, the solution provides the designer 
with two degree of freedom to control the bistatic width. 
The new results obtained in this paper are important, 
since they can be used to validate similar results obtained 
using other methods, and provide an insight into how the 
changing of various parameters associated with a 
chirally coated PEMC elliptic cylinder changes the 
scattering widths that could be obtained from it. 
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