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Abstract ─ This paper presents a highly structured 
procedure for multi-objective optimal design of radial 
surface Permanent-Magnet Synchronous Motor 
(PMSM). Firstly, a detailed analytical model based on 
the resolution of Maxwell’s equations using the 

separation of variables method is presented. From the 
same model, analytical expressions of four constraint 
functions dedicated for the optimal design of the PMSM 
are developed. These constraints are: electromagnetic 
torque, back electromotive force (back-EMF), flux 
density saturation in stator/rotor yoke and saturation in 
stator tooth. Then, the Non-dominated Sorting Genetic 
Algorithm-II (NSGA-II) is employed to optimize the 
multi-objective problem formed by two objective 
functions (weight and power loss of the motor) and 
different constraints. Finally, the finite element method 
is used to validate the designed 30 kW PMSM. 
 
Index Terms ─ Analytical model, finite elements, 
NSGA-II, optimal design, permanent magnet 
synchronous motor. 
 

I. INTRODUCTION 
In recent years, the manufacturers of electrical 

machines have shown a growing interest for permanent 
magnet synchronous machines (PMSMs). This interest 
is mainly due to the high efficiency, high reliability, high 
power density, small size and decreasing cost of 
magnets. Different topologies of PM machines are 
available; e.g., radial flux machines, axial flux machines 
and transversal flux machines [1]. However, the 
performances of PMSMs are greatly depends on their 
optimal design and control. 

The design and dimensioning of an 
electromechanical actuator calls into play a great number 
of parameters which are subject to the laws which 
describe physical phenomena on the one hand and to the 

specifications of the schedule of conditions on the other 
hand. In the practice, many electromagnetic optimization 
problems are solved by means of highly accurate models 
(e.g., finite element model) with different optimization 
algorithms. However, these approaches are 
computationally expensive, especially when stochastic 
optimization algorithms are used [2]. As an alternative, 
very simplified analytical models are useful tools for first 
evaluation and design optimization. They are proved 
fast, but not very accurate [3]. 

In this paper, the authors attempt to provide helpful 
tools for the fast analysis and multi-objective optimal 
design of PMSMs. Prior to the optimization, an 
analytical model, sufficiently accurate and fast, based on 
the resolution of Maxwell’s equations using the 

separation of variables method is presented. Then, the 
design processes was formulated as a multi-objective 
optimization problem and solved by NSGA-II method. 
Finally, validity of the proposed methodology is 
confirmed through the finite element analysis of the 
designed 30 kW PMSM. 
 
II. DEVELOPMENT OF THE ANALYTICAL 

MODEL 
The general configuration of a slotted surface-

mounted permanent magnet motor considered in the 
present work is shown in Fig. 1. 

The analytical method used in this paper is based on 
analysis of 2-D model in polar coordinates. The 
following assumptions are made [4-7]: 

- The stator and rotor cores are assumed to be 
infinitely permeable. 

- End effect and saturation are neglected. 
- Permanent magnets have a linear demagnetization 

characteristic. 
- Eddy current effects are neglected (no eddy 

current loss in the magnets or armature windings). 

1054-4887 © 2015 ACES

Submitted On: June 30, 2014
Accepted On: November 10, 2014

519ACES JOURNAL, Vol. 30, No. 5, May 2015



- Stator current source is represented by a current 
sheet distributed over the stator inner radius. 

 

 
 
Fig. 1. Cross sectional view of the studied PMSM. 
 

In the above considerations, the calculation region 
can be classified into two parts: PMs (Region I), and air-
gap (Region II). The flux density and field intensity are 
expressed as: 
In Region I: .HμB

��
0�  (1) 

In Region II: MμHμμB r

���
00 �� , (2) 

where rμ  is the relative recoil permeability, M
�

 is the 
magnetization vector of permanent magnets. The 
direction of M

�
 depends on the orientation and 

magnetization of permanent magnets. In polar 
coordinates, the magnetization vector M

�
 is expressed 

as: 
 .eMeMM rr ��

���
��  (3) 

The governing field equations are, in terms of the 
Coulomb gauge, A 0� �A 0A , as follows: 
In Region I: .MμA

��
#��� 0
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In Region II: .A 02 ��
�

 (5) 
A
�

 (the magnetic vector potential) only has Az 
component which is independent of z (infinitely long 
machine in axial direction). 

By using the method of separating variables, the 
general solution of (4) and (5) can be expressed as: 
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where Ap is the particular solution of (4) for the 
permanent magnets region, given by:
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where Mr,g and Mθ,g are the complex Fourier coefficients 
of the two components Mr(θ) and Mθ(θ) of the 
magnetization vector .M
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where p is the pole pair number and Ω is the rotor speed. 
In (6) and (7), C1, C2, C3, and C4 are constants to be 

determined by applying the boundary conditions on the 
interface between rotor and PMs (i.e., r=R1), PMs and 
air gap (i.e., r=R2) and between the air-gap and stator 
(i.e., r=R3). These conditions can be defined as: 
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J is the total current density vector given by: 
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where m is the number of phase windings and Jn is the 
current density for phase n given by the product of the 
conductor density Cn(θ) and the stator current In, with: 
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The Fourier coefficient Sg is determined by taking 
into account the windings characteristics. In the case of 
diametric winding, Sg is given by: 
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where Nspp is the number of slots per pole and per phase, 
Pt is the stator tooth-pitch and γ given by: 
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where Nc is the number of conductors in one slot and bs 
is the slot width.

R0 

R1 

R2 

R3 

R4 
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In the general case, the total stator current density 
can be written as a Fourier series: 
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where Jg is the complex Fourier coefficient given by: 
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The resolution of the above system (11) gives the 
constants C1, C2, C3, and C4. They can be expressed as: 
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Hence, the magnetic vector potential is completely 
defined in the two regions by (6) and (7). Therefore, the 
flux density in the air-gap and PMs is given by: 
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where i=I,II design the concerned region. 
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To improve the precision of this analytical model, 
Carter’s coefficient Kc is applied to compensate the slots 
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effects. In this case, a new air gap length ec is defined by 
[8]: 
 c ce K e�� , (50) 
where 
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III. CONSTRAINTS DEDUCED FROM THE 

PROPOSED MODEL 
A. Torque constraint 

The torque developed on the motor can be obtained 
by calculating the Maxwell stress tensors in the air-gap 
[4,6,7]: 
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where L is the axial length. 
Incorporating (40) and (41) in (52) and integrating 

on the tangential direction yields to the final expression 
of the torque in terms of field sources (Mr,g, Mθ,g and In): 
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The torque expression (53) depends on the design 
parameters. Therefore, this expression can be used as 
objective function or as constraint in the preliminary PM 
motor design. 
 
B. Back electromotive force constraint 

The back-EMF created by the permanent magnet 
can be obtained by Faraday’s law: 
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where Φn0(t) is the phase n flux linkage created by PMs. 
Based on Stokes theorem, the flux linkage Φn0(t) is 

calculated by: 
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After the substitution and the simplification, the 
final expression of Φn0(t) is given by: 
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From the equations (55) and (57), the back-EMF 
created by PMs is given by: 
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C. Stator and rotor yoke saturation constraint 

The definition of the no saturation constraint of 
rotor/stator yoke needs the acknowledgement of the flux 
density in these regions. 

The Fig. 2 shows that the magnetic flux in rotor yoke 
Фr(t) is equal to the flux in a half PM pole Фhp(t): 
 ( ) ( )r hpt t= �= . (60) 
 

 
 
Fig. 2. Flux density trajectory in rotor yoke. 
 

From the Fig. 2, the rotor flux yoke is given by: 
 � 	1 0( ) ( ) ( )r r r rt B t S L R R B t= � �  , (61) 
where Br(t) is the tangential component of flux density 
in the rotor and Sr is the cross section area of the rotor 
yoke. 

In other hand, the magnetic flux in half PM pole at 
R1 is given by: 
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By using (60), (61) and (62) we obtain the analytical 
expression of the flux density in the rotor/stator yoke 
(supposed to have the same dimensions): 
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Usually, to avoid excessive saturation, the 
maximum flux density of iron core is limited to the range 
1.6-1.9 T [3]. 
 
D. Stator tooth saturation constraint 

In the case of slotted motor, we can introduce a 
constraint for no stator tooth saturation. 

If we neglecting the flux leakage, the flux in the 
stator tooth Фtooth(t) is given by: 
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The stator tooth flux can be also expressed as: 
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 ststtooth StBt )()( �= , (65) 
where Bst(t) and Sst are the flux density and the small 
cross section area of stator tooth respectively. 

By using (62), (64) and (65) we obtain the 
expression of the flux density in the stator tooth as: 
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IV. DESIGN OPTIMIZATION PROCEDURE 

A. Optimization problem definition 
In order to present the design optimization 

procedure of surface mounted PMSM, based on the 
above analytical model, we designed a 30 kw PMSM 
with the following assumptions: 10 poles, 30 slots, one 
slot per pole and per phase (Nspp=1), based speed 
wbase=1500 rpm, maximal speed wmax=4500 rpm, current 
density J=7 A/mm2, NdFeB magnets with a remanent 
flux density of 1.2 and a relative permeability of 1. 

The objective functions fixed for this optimization 
are: 

- Minimizing the weight of the motor (M). 
- Maximizing the efficiency by minimizing the 

power loss (PL). 
The mass M of the active part is given by: 

 RSPMC MMMMM ���� , (67) 
where MC, MPM, MS and MR are respectively the weight 
of: the copper, the permanent magnet, the stator iron and 
the rotor iron. These masses are given by the following 
expressions: 
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where Ss is the section of copper in slot, KPM is the 
magnet-arc to pole-pitch ratio and Ps is the slot depth. 
Also, ρcopper, ρPM and ρiron are respectively the density of: 
copper, permanent magnet and iron. 

The power loss in the PMSM is given by the sum of 
the loss in the stator winding (PLcop) and the core loss 
(hysteresis PLhys and eddy current loss PLeddy) [3]: 
 _( ) ( )L Lcop Lhys Leddy volume ironP W P P P V� � � , (72) 
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where Khys and Keddy are the classical eddy and hysteresis 
loss coefficients which can be calculated at various 
frequencies and flux densities from curve fitting of 
manufacturer data sheets. 

Finally, the multi-objective constrained 
optimization problem is defined as: 
Minimize: weight and power loss (76) 
Subject to the following constraints: 

- Electromagnetic torque, T = 191 Nm 
- Back-EMF at maximum speed, Emax ≤ 500 V 
- Tator/rotor yoke flux density, Byoke ≤ 1.6 T 
- Tator tooth flux density, Btooth ≤ 1.6 T 
Firstly, before solving the above problem (76), we 

have dimensioning our PMSM by using the direct 
method proposed in [3]. From the obtained initial 
dimensioning, we have chosen seven variables, given in 
Table 1 with their exploration domain, to solve the final 
problem (76). 
 
Table 1: The exploration domain for each variable 

Variable Symbol Min Max 
Inner radius of the 

rotor yoke (m) R0 0.07 0.13 

Axial length (m) L 0.06 0.12 
Thickness of 

magnet (m) LPM 0.003 0.006 

Radius of the rotor 

yoke surface (m) R1 0.13 0.2 

Magnet-arc to 

pole-pitch ratio KPM 0.6 0.9 

Slot-opening to 

slot-pitch ratio KSo 0.3 0.6 

Slot depth (m) Ps 0.02 0.03 
 
B. Non-dominated sorting genetic algorithm 

To optimize the constrained multi-objective 
problem (76), the Non-dominated Sorting Genetic 
Algorithm II (NSGA-II) is applied. 

The NSGA-II is one of the most widely used 
algorithms in various engineering optimization 
processes due to its simplicity, parameter less-niching, 
better convergence near the true Pareto-optimal front, 
better spread of solutions and low computational 
requirements [9-11]. 

The main NSGA-II procedure is given below: 
- Create a random population P0 (of size N). 
- Sort P0 according to non-domination. Each 

solution is assigned a new fitness equal to its non-
domination rank (1 is the best level). Then, use 
selection, recombination, and mutation to create 
the offspring population Q0 (of size N) from P0. 

- While generation count is not reached, combine 
parent and offspring population to form the 
combined population Rt (of size 2N). 
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- Perform non-dominated sort on the population Rt. 
Then, calculate the crowding-distance for each 
solution. It is calculated by the size of the largest 
cuboid enclosing each solution without including 
any other point [9,10]. 

- Construct the next parent population Pt+1 by 
choosing only the best N solutions from Rt. Each 
solution is evaluated by using its front rank as 
primary criteria and crowding-distance as 
secondary if it belongs to the last selected front. 

- Use the new parent population Pt+1 (of size N) for 
selection, crossover, and mutation to create a new 
population Qt+1 (of size N). We note that the 
selection criterion between two solutions is now 
based on the crowded-comparison operator (If the 
two solutions are from different fronts, we select 
the solution with lowest front rank. But, if they are 
from the same front, we select the individual with 
the highest crowding distance). 

In this paper, the following parameters are used: 
population size N=200, maximum number of generations 
is 4000, mutation probability is 0.1, and crossover 
probability is 0.9. The variables are treated as real 
numbers and the Breeder Genetic Crossover (BGX) and 
the real-parameter mutation operator are used [12]. 
 
C. Results 

The multi-objective optimization takes 70 minutes 
with NSGA-II method. The Pareto-optimal front for 
motor weight versus total loss is obtained as shown in 
Fig. 3. 

The variables and the performances of the initial 
(MI) and two optimized PMSMs (MW: minimum weight 
and MP: minimum power loss) are presented in Table 2. 
As shown, the optimized motors characteristics are 
significantly better than the initial motor. The mass and 
the total power loss are minimized and are smaller than 
that of the initial motor. Also, the four optimization 
constraints are respected, especially the value of the 
electromagnetic torque. 
 

 
 
Fig. 3. Pareto-optimal front. 

Table 2: Comparison between the initial and optimized 
PMSMs 

Variables and 
Performances MI MW MP 

R0 (m) 0.0955 0.1147 0.113 
L (m) 0.0955 0.06 0.0695 

LPM (m) 0.0077 0.006 0.006 
R1 (m) 0.1251 0.1428 0.1439 

KPM 0.833 0.6 0.6 
KSo 0.5 0.4027 0.3042 
Ps 0.0239 0.0272 0.03 

Number of conductors 

in slot 8 12 10 

Current (A) 100 105 105 
Electromagnetic 

torque (Nm) 177.7 191 191 

Back-EMF at 

maximum speed (V) 448.9 464.3 461.5 

Maximum yoke flux 

density (T) 1.9 1.6 1.5 

Maximum tooth flux 

density (T) 1.4 1.6 1.4 

Mass (kg) 61.3 44.6 56 
Total power loss (W) 3955 2237.7 2092.5 

Efficiency 0.8835 0.9306 0.9348 
 

In order to validate the proposed design procedure, 
the performances of MW designed machine have been 
compared with 2D finite element simulations (2D FE). 
Figures 4 and 5 show respectively the electromagnetic 
torque and the back-EMF. We can observe that the mean 
torque and the maximum value of the back-EMF 
obtained by FE simulations are in good agreement with 
analytical results. However, the small error between the 
two models and the ripples in the torque and in the back-
EMF are due to the effect of stator slots, considered in 
implicit way in the analytical model by Carter’s 
coefficient. 
 

 
 
Fig. 4. Electromagnetic torque obtained for w=1500 rpm 
(the base speed). 
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Fig. 5. Back-EMF obtained for w=4500 rpm (the 
maximum speed). 
 

V. CONCLUSION 
In this paper, an optimal design procedure of surface 

mounted PMSM is investigated. Firstly, an analytical 
model of PMSM is presented. This model is sufficiently 
accurate and fast to be used in the design optimization 
with stochastic methods like genetic algorithms. Then, 
the NSGA-II method is proposed to solve the highly 
nonlinear constrained multi-objective problem formed 
by two objectives (motor weight and total power loss) 
and four important constraints (demanded value of 
electromagnetic torque, maximum limit of back EMF, 
flux density saturation in stator/rotor yoke and saturation 
in stator tooth). 

Finally, this design procedure, based on the 
proposed analytical model and NSGA-II algorithm, has 
been successfully applied for optimal design of 30 
kW/1500 rpm PMSM. The obtained results show that the 
proposed methodology has a good accuracy and requires 
a reasonable computation time. Also, the Pareto fronts 
obtained from this procedure allows the designer to 
consider a good compromise between efficiency and 
weight of the motor in an effective manner. Moreover, 
this method can be used to design another types of 
machine, such as PMSM with external rotor. 
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