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Abstract ─ A technique is derived by means of which the 

calculation of radiation from arbitrarily shaped aperture 

antennas can be greatly simplified compared to the 

conventional approach. In the conventional approach the 

null field region of an equivalence problem is typically 

filled with a conductor, effectively short-circuiting the 

aperture and the electric surface current density 

everywhere. The remaining aperture magnetic surface 

current density, which is known, then radiates in the 

presence of the conductor and the Green’s function 

associated with each particular antenna configuration 

has to be derived, usually a very cumbersome process. In 

the proposed technique a conductor is again placed 

within S, but with an infinitesimal small distance 

between the conductor and S. The image of the electric 

current density on S is shown to be induced on the 

conductor and the free space radiation integrals can now 

be used to solve the radiation problem. Examples are 

presented to prove the new technique and to demonstrate 

the mechanics of the equivalence principle when applied 

to aperture antenna problems. 

 
Index Terms ─ Aperture antennas, aperture theory, 

equivalence principle, horn antennas, image theory, 

reflector antennas, slot antennas. 

 

I. INTRODUCTION 
This paper is intended to augment a technique 

published by the author in 2003 [1] through which 

radiation from arbitrarily shaped aperture antennas can 

be calculated by means of the free space radiation 

integrals, circumventing the need to derive problem-

specific Green’s functions as stated in most textbooks on 

the topic. The technique is based on the placement of a 

conductor in the null field region of a surface 

equivalence problem to “short-circuit” the aperture, and 

in [1] the author merely conjectured how the process 

should be interpreted from a mathematical point of view. 

In this paper it is demonstrated through an example that 

the author’s initial assumptions were valid, and the 

implementation and limitations of the technique are 

discussed through additional examples. Whereas only 

radiated fields were presented for the examples 

discussed in [1], this paper focusses specifically on the 

induced current densities in the aperture region of the 

free space equivalence problem. Through the examples 

it is shown that the short-circuited aperture indeed 

reproduces the original aperture fields as would be 

required.  

Figure 1 (a) depicts a physical aperture antenna 

radiating in free space (two-dimensional, for the sake of 

simplicity). The surface equivalence principle [2,3]  

can be applied to replace the physical antenna with 

equivalent electric and magnetic surface current 

densities radiating in free space, as shown in Fig. 1 (b). 

The equivalent electric and magnetic surface current 

densities are defined by (1) and (2), respectively, with n̂  

a unit vector normal to S, pointing towards Region 1. The 

magnetic current density is zero everywhere except in 

the aperture region.  

The electromagnetic fields external to S are equal to 

the electromagnetic fields in the original problem, but 

the fields internal to S are selected to be zero (Love’s 

equivalence [4]). The sources Js and Ms in Fig. 1 (b) 

radiate in an unbounded medium (same μ,ε everywhere) 

and can be used in conjunction with the free space 

radiation integrals (two-dimensional) in (3) and (4)  

to calculate the fields both regions of Fig. 1 (b). In 

Equations (3) and (4) f is the frequency, λ the wavelength, 

ω=2πf the angular frequency, k=2π/λ the wavenumber, μ 

and ε the constituent parameters for the medium of 

propagation and r the distance from the integration point 

to the field evaluation point. 

For many aperture antenna problems the distribution 

of the electric field in the aperture is known to good 

approximation, but not necessarily so the distribution 

and relative magnitude and phase of the magnetic field 

in the aperture, with slot antennas being a good example. 

One would, therefore, try to redefine the problem such 

that only the magnetic current density needs to be taken 

into account as a source; 

  Js= n̂ × H1, (1) 
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Since the electromagnetic fields inside S are zero, 

the medium inside S can be replaced by a different 

medium without affecting the fields external to S [5]. If 

we fill the area inside S with an electric conductor as 

shown in Fig. 1 (c), the reciprocity theorem can be 

invoked to show that the electric current density Js 

(including Js=Jap) will no longer produce any fields 

(“We can think of the conductor as shorting out the 

current” [6]), and we are left with a magnetic current 

density Ms=Map impressed upon an electric conductor. 

However, since Ms no longer radiates in an unbounded 

medium, the free space radiation integrals of (3) and (4) 

can no longer be used to calculate the fields external to 

S. Consequently, as stated in two prominent antenna 

theory textbooks: 

“The introduction of the perfect conductor will have 

an effect on the equivalent source Js, and it will 

prohibit the use of [the free space radiation 

integrals] because the current densities no longer 

radiate into an unbounded medium. … The problem 

of a magnetic current density radiating in the 

presence of an electric conducting surface must be 

solved. So it seems that the equivalent problem is 

just as difficult as the original problem itself.” [7],  

and 

“If a perfect conductor is placed along S, Js will 

vanish. The explanation is often given the electric 

current is ‘shorted out’ by the conductor. This leaves 

a magnetic current density Ms radiating in the 

presence of the electric conductor … these problems 

are difficult to solve as long as S is a general 

surface.” [8]. 

What this implies is that the Green’s function 

associated with the specific radiating geometry needs to 

be derived, typically a very cumbersome process that is 

limited to elementary geometries (see for example 

[9,10]). Furthermore, it is clear that some uncertainty 

exists about just how the conductor “shorts out” the 

electric current density.  

We will next endeavour to show that it is possible to 

derive a new technique for solving the above problem 

which “shorts out” Js, while still allowing the free space 

radiation integrals to be used (see also [1, Section 2]).  

 

II. DERIVATION OF THE NEW 

TECHNIQUE 
Since the electromagnetic fields within S (Region II) 

are zero, we can as before place an electric conductor 

within S, with the difference that the conductor does not 

fill Region II completely as shown in Fig. 1 (d). We can 

treat this as simply another equivalence problem in 

which the physical conductor, which is illuminated by 

external sources Js, Jap and Map, is replaced by an 

equivalent electrical surface current density Jc on C, with 

all current densities now radiating in free space. The 

induced electrical surface current density Jc in Fig. 1 (d) 

is equal to zero as all the electromagnetic fields within S 

are zero, but can still be expressed as: 

 Jc = Jc(Js)  +  Jc(Jap) + Jc(Map)  ≡ 0. (5) 

We next bring C infinitely close to S (C=S -), with d 

small but not zero (i.e., d << λ). As proven by the 

reciprocity theorem, an electric current density radiating 

in the immediate presence of an electric conductor will 

produce no field. In terms of the configuration shown in 

Fig. 1 (d), and keeping in mind that all the current 

densities radiate in free space, this is mathematically 

speaking only possible if Jc(Js) ≈ −Js at any point on 

the conducting part of S and likewise Jc(Jap) ≈ −Jap in 

the aperture region. The fields radiated by Js +  Jc, 

external to S are calculated from (3) and (4) and can only 

be zero if Jc =  −Js. The “image” of Js is therefore 

induced on the conductor that backs Js, irrespective of 

the shape of S. 

With the electric source current densities having 

accordingly been cancelled everywhere on S, the 

problem in Fig. 1 (d) is reduced to the one shown in Fig. 

1 (e), where Map induces Jc(Map) on S -, which now is a 

closed electrical conductor. In other words, the aperture 

has been short-circuited with Map placed infinitely close 

to it in the aperture region as shown in Fig. 1 (e), and 

Jc(Map) is merely the electric current density it induces 

on C. 

The magnetic surface current density Map is usually 

known for many aperture antennas and Jc can then be 

solved for by techniques such as the Electric Field 

Integral Equations (EFIE) and the Method of Moments 

(MoM) [11]. Significantly, it is no longer necessary to 

derive the Green’s function of the specific radiating 

structure. Note that it does not matter whether the 

conductor is placed inside S on S -, or on S with Map 

moved an infinitesimal distance outside S to S +. The 

latter approach is often easier to implement as the 

radiating structure may be quite complex while the 

aperture field distribution typically is simple by 

comparison (see the horn antenna examples at the end). 

This forms the premise of the new technique. 

482 ACES JOURNAL, Vol. 31, No.5, May 2016



One may ask whether the new technique will 

reproduce the original surface current densities Js and Jap 

on S - and this is indeed what we can expect. From (5) we 

have: 

 Jc(Map) =  −Jc(Js) −  Jc(Jap), (6) 

and as we have argued above, for d approximating zero,  

Jc(Js) = −Js and Jc(Jap) = −Jap on C, which yields: 

 Jc(Map) = J𝑠 +  Jap, (7) 

or to be more precise, Jc(Map) =  Jap in the aperture 

region of S and zero elsewhere, and Jc(Map) =  Js in the 

conducting region of S and zero elsewhere. 

        

        

 
 

Fig. 1. Application of the equivalence principle to an aperture antenna problem. 
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III. SHORT-CIRCUITING AN ELECTRIC 

SURFACE CURRENT DENSITY 

RADIATING IN FREE SPACE 
In order to prove the validity of the new technique, 

we will first demonstrate through an example that when 

an electrical conductor is brought infinitely close to an 

electric surface current density Js defined on an 

arbitrarily shaped surface S, radiating in free space, the 

oppositely directed current density will be induced on the 

conductor (Jc = − Js) and Js will effectively be short-

circuited. No electromagnetic fields will be radiated by 

the combination of Js and the current density Jc on the 

conductor. Although this sounds logical, it is important 

to note that the conductor can be replaced by the negative 

image of Js everywhere on S, although classical image 

theory [12] does not apply to the problem in any sense. 

As an example, Fig. 2 depicts a surface current 

density Js superimposed onto a circular surface S of 

radius R=λ, with an electrical conductor of radius r 

having been placed at the centre of S. The gap between 

S and the conductor is given by d=R-r. The surface 

current density Js is defined by (8) to (10) and does not 

produce a zero field inside S. Note that the phase 

function α is calculated first for 0≤φ≤ π, from which the 

magnitude function J is calculated over the same sector. 

As indicated by (10), the current in the sector -π≤φ≤0 is 

numerically duplicated from the 0≤φ≤π sector. Placing a 

conductor inside S will therefore affect the total radiated 

field.  

The induced surface current density Jc and the total 

radiated field were calculated by means of the EFIE and 

MoM for r=0 (i.e., no reflector, denoted ‘Source’ in the 

plots), r=0.5λ, r=0.95λ and r=0.999λ, respectively. 

Figure 3 shows the magnitude and phase of the 

calculated electric current density Jc for the 

abovementioned reflector radii, and Fig. 4 the radiated 

far field (calculated at 100 m at f=2 GHz). It is clear that 

as d→0 (i.e., r→R), Jc → −𝐉𝐬 and the total radiated field 

given by Js +  Jc tends to zero (already being 45 dB 

down from the case where r=0). In Fig. 3 (b) a value of 

+180° was added to the phase of Jc in order to facilitate 

a direct overlay of the curves. 

 𝛼(𝜑) = 𝜑 + 𝜋 cos 2𝜑,      0 ≤ 𝜑 ≤ 𝜋, (8) 

  𝐽(𝜑) = |cos (
𝛼(𝜑)

3
)| , 0 ≤ 𝜑 ≤ 𝜋, (9) 

 Js(𝜑) = 𝐽(𝜑)𝑒𝑗𝛼(𝜑) ,   Js(−𝜑) = Js(𝜑). (10) 

We will next discuss the application of the new 

technique through several examples. 

 

 
 

Fig. 2. Js  superimposed onto a circular surface S with 

conductor C placed inside S, r→R. 

 

 
 (a) Magnitude 

 
 (b) Phase 

 

Fig. 3. Magnitude and phase of Jc for r=0, r=0.5λ, 

r=0.95λ and r=0.999λ. 
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Fig. 4. Radiated patterns for r=0, r=0.5λ, r=0.95λ and 

r=0.999λ. 

 

IV. EXAMPLE 1 – A LINE SOURCE 

RADIATING IN FREE SPACE 
Perhaps the simplest example for demonstrating 

how the new technique can be used is the case of a line 

source radiating in two-dimensional free space, as shown 

in Fig. 5. The electric and magnetic source fields at 

distance r from the source are expressed by Equations 

(11) and (12), respectively: 

 Ei(r) = 
1

√r
e-jkr ẑ   =  Ei (r) ẑ, (11) 

 Hi(r) = -
1

η
Ei (r) φ̂. (12) 

In (12) η represents the free space wave impedance.  

An equivalent surface S can now be placed around 

the line source and together with the surface current 

densities Js1 and Ms1, it will produce the true fields with 

S and a null field external to S. For external equivalence, 

the surface current densities Js2=-Js1 and Ms2=-Ms1 will 

produce null fields internal to S and the original (true) 

fields external to S. For the sake of simplicity, we define 

surface current densities J1=-Js1 and M1=-Ms1 to produce 

the external fields (Region 1 as defined in Fig. 1). Two 

examples were considered, one in which S is a circle and 

the other in which S is a square with the line source at its 

centre. Note that since Js is z-directed, the surface 

divergence term in (3) is zero. The surface divergence 

integral in (4) can also be neglected for slowly varying 

Ms as the coefficients of the two integrals involving Ms 

differ by a factor of k=2π/λ and for evaluation points 

directly below Ms, we have n̂ =- r̂ , so that from (1) and 

(4) the cross product will be zero. As before, an electric 

conductor C is next placed inside S and brought infinitely 

close to S. 

The free-space fields can be viewed as aperture 

fields and, in accordance with the new technique, S can 

be viewed as a conductor ( n̂ × E = 0 on its surface) with 

Jc on S and Ms2 having been placed an infinitesimally  

small distance outside S. 

We first consider the case where S is circular, f = 3 

GHz and r = Ro = 3λ. From Equations (1), (2), (11) and 

(12) we have: 

 J1 = -
1

η
Ei (Ro) ẑ    = -46.29 dB ∠ 180° ẑ, (13) 

 M1 = + Ei (Ro) φ̂  = +5.23 dB ∠ 0° φ̂, (14) 
everywhere on S, due to the symmetry of the problem. 

With d=0.03 λ, the value for Jc calculated by means of 

the MoM (the author used a rather elementary pulse basis 

function with point matching scheme) was Jc = -46.19 

dB ∠ 168° ẑ. Note that since M1 was used as the source 

and it was placed a distance d away from the equivalent 

surface S (see Fig. 6), one should expect a phase 

difference between J1 and Jc of about –kd = -10.8°, 

which is indeed the case (180°-10.8°=169.2°). Since the 

source surface current density Ms will typically be 

approximated by segments, a general rule of thumb for 

the ratio between d and ∆M, the length of the segments, 

is ∆M ≤ d. Conversely, the distance between integration 

or sampling points on Ms should be smaller than d.  

We next consider the case where S takes the form of 

a square that replaces the circle with radius Ro, as shown 

in Fig. 6. In this case (13) and (14) still hold where r = 

Ro, but the equivalent surface current densities J1 and M1 

are no longer uniform on S. With r(x,y) and φ̂ as defined 

in Fig. 5, we can derive the following equations for the 

right hand side of the square, and similar equations for 

the other three sides of the square: 

 r = r(x,y) =  √x2+y2, (15) 

 n̂  =  x̂,(16) 

 φ̂ = -sin(φ) x̂ + cos(φ)  ŷ, (17) 

 J1= n̂ × Hi(r)= -
1

η
Ei (r) cos(φ) ẑ, (18) 

 M1= - n̂ × Ei(r) = Ei (r) ŷ. (19) 

 

 
 

Fig. 5. Line source in two-dimensional space with S 

circular and square. 
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Fig. 6. Rule of thumb for ratio of d to ∆M. 

 

Figure 7 shows the geometrical optics current 

density from (18) as well as the MoM current density 

calculated from M1 in (19) as backed by a conductor a 

distance d inside S. The erratic behaviour of the current 

density amplitude at the corners is most likely due to the 

field distribution at the 90° corners, which would 

generate a diffraction term for d not equal to zero. The 

phase difference of about 10° is like before due to the 

distance d between M1 and the conductor on which J1 is 

induced.  

From these graphs it is clear that M1 backed by a 

perfect electrical conductor does indeed reproduce the 

original free space electrical surface current density J1 

on S.  

It is instructive look at the total fields radiated by J1 

and M1 as well (integration is performed along the entire 

length of S). For this example a cross section of the 

equivalent surface was taken as shown in Fig. 8. 

Inside S we expect the fields radiated by J1 and M1 

to add up to zero, and to the true (geometrical optics) 

fields outside S. This is indeed the case, as shown in Figs. 

9 (a) to 9 (c). In these figures ‘Original’ designates the 

electric field as calculated from (11), ‘J&M’ the results 

obtained from the geometrical optics expressions for J1 

and M1, ‘Circle + SC’ the MoM J1 obtained by placing 

M1 on a concentric circle around the line source and 

backing (short-circuiting) it with a conductor, and 

‘Square + SC’ the same for the square surface. As 

expected, the fields in the null region are not identically 

equal to zero, most likely due to the limitations of the 

pulse basis function with point matching scheme used by 

the author, and phase differences between J1 and M1.  

Inside (left) of S, J1 and M1 will more or less add 

correctly in phase as J1 already lags M1 in phase by –kd, 

but when M1 radiates inward, it will also have undergone 

a phase change of –kd (see Fig. 10). However, for 

external radiation J1, which already lags by –kd, will 

undergo another phase shift of –kd before reaching M1. 

The new technique will, therefore, introduce a local 

phase difference of –2kd between J1 and M1, which will 

have some effect on the total radiated fields. 

Nevertheless, the effect will still be almost negligible 

when the closed surface integration is performed as is 

evident from Fig. 9 (c), which shows the magnitude and 

phase differences between MoM calculated results and 

the original field calculated form (11). 
 

 
 (a) Magnitude 

 
 (b) Phase 
 

Fig. 7. Magnitude and phase distribution of J1 along one 

side of the square. 

 

 
 

Fig. 8. Cross section through S for electric field strength 

calculation. 
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 (a) Magnitude 

 
 (b) Phase 

 
 (c) Relative magnitude and phase errors 
 

Fig. 9. Magnitude, phase and errors between GO field 

and MoM calculated electric field along cross section 

through S. 
 

 
Original problem M1 moved a distance d to the 

                                      right of S 
 

Fig. 10. Phase error in field component radiated by J1 in 

new technique. 

V. EXAMPLE 2 – REFLECTOR WITH LINE 

SOURCE FEED 
The next example demonstrates how the new 

technique can be used with arbitrarily shaped aperture 

fields and radiating structures. The basic problem is 

depicted in Fig. 11 (a), where a line source illuminates a 

parabolic reflector with dimensions D=10λ, F=1λ, which 

is evaluated at f=10 GHz. The problem was initially 

solved by means of the MoM, following which an 

artificial circular equivalent surface S was introduced as 

shown in Fig. 11 (b), with r=3.02λ. The electric field 

along this surface was calculated by means of the MoM 

and was then converted to the magnetic source current 

density M1. S was then “short-circuited” (i.e., treated as 

a continuation of the reflector surface), and M1 was 

moved a distance d=0.05λ away from S, in accordance 

with Fig. 1 (e), and the equivalent electric current density 

Jc on S was calculated by means of the MoM. 

 

 
 (a) Original problem 

 
 (b) With circular equivalent surface 

 

Fig. 11. Parabolic reflector with artificial equivalent 

aperture surface. 
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It is relatively straightforward to calculate the 

geometrical optics reflected electric and magnetic fields 

on S as depicted in Fig. 12, from which the geometrical 

optics magnetic and electric equivalent current densities 

MGO and JGO at point (x,y) can be calculated as: 

 MGO= (
e-jkla

√la
 −  

e-jk(lb+lc)

√lb
)  φ̂, (14) 

and 

 JGO= (−
e-jkla

η√la
 + 

e-jk(lb+lc)

η√lb
cos φ)  ẑ. (15) 

 

 
 

Fig. 12. Geometrical optics ray paths for direct and 

reflected fields. 

 

Figures 13 and 14 show the magnitude and phase 

plots of the MoM calculated magnetic and electric 

current densities M1 and Jc, respectively, compared to 

the geometrical optics calculated current densities MGO 

and JGO. The difference between the MoM and GO 

current densities in the centre region can most likely be 

attributed to the fact that diffracted fields from the edges 

of the reflector had been ignored in the GO calculations 

(these would add in phase along the axis of the reflector). 

At the magnitude peaks in Fig. 14 (a) the difference 

between the MoM and GO results is, however, very 

small and the phase difference in Fig. 14 (b) at these 

points is about -18.6°, as can be expected for d=0.05λ (-

kd=-18.0°). The abrupt discontinuity in the electric 

surface current density of (1) at the transition from the 

reflector to the circular region is due to the abrupt change 

in the direction of n̂  at this point. It will become less as 

the segmentation (the distance between sampling points) 

is made smaller.  

Note that the x-axis in these graphs reflects only the 

number of sampling points, of which the density is 

greater in the centre of the parabola, and not the true 

distance along S. The Physical Optics current density  

[13] (PO), which is given by the approximation JPO=2 n̂
×Hi, is also shown in Fig. 14, overlaid with the MoM 

current density as calculated outside the aperture area. 

The magnitude difference between the PO and MoM 

results is typically less than 0.5 dB and in fact reduces 

even further as the electrical size of the parabola is 

increased.  

It is of interest that the stationary phase solution of 

the radiation integrals associated with JPO can be shown 

to yield the geometrical optics reflected fields [14] as 

used to derive (14) and (15). 

This example again confirms that a short-circuited 

magnetic current density radiating in free space induces 

the corresponding free space electric current density on 

the conducting surface, which also radiates in free space. 

It would be near impossible to derive a Green’s function 

for the geometry shown in Fig. 11 (b).  

Figure 15 shows the far field radiation patterns for 

the original configuration of Fig. 11 (a) and the 

configuration with the circular equivalent surface shown 

in Fig. 11 (b), respectively. Despite the two approaches 

being fundamentally different, the agreement is 

excellent. 

 

 
 (a) Magnitude 

 
 (b) Phase 

 

Fig. 13. Magnitude and phase of calculated M1 in 

circular aperture region. 
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 (a) Magnitude 

 
 (b) Phase 

 

Fig. 14. Magnitude and phase distribution of Jc along S 

for parabolic reflector example. 

 

 
 

Fig. 15. Far field radiation patterns for parabolic reflector 

example. 

 

VI. HORN ANTENNA EXAMPLES 
It is important to note some of the practical 

applications of the new technique. As an example, 

radiation from an X-band flared horn antenna with 

waveguide dimensions WW=22.86 mm and WH=10.16 

mm, aperture dimensions AW=22.86 + 2x20 = 62.86 mm 

and AH=10.16 + 2x20 =50.16 mm, and length L=20 mm 

(Fig. 16) was calculated by means of 2D and 3D (FEKO 

[15]) simulation software. In the 2D case, the waveguide 

aperture was short-circuited and the equivalent magnetic 

current densities MW=cos(y/WW*π)�̂� for –WW/2 ≤ y ≤ 

+WW/2 and MH=�̂� for –WH/2 ≤ y ≤ +WH/2, were placed 

a distance d=0.02λ to the right of the short-circuited 

waveguide aperture, respectively.  

Note that for the 2D calculations the E-plane and H-

plane problems were solved independently of each other. 

The 3D horn antenna was fed by a waveguide which was 

excited with the FEKO rectangular waveguide source 

model. As shown in Fig. 17, the correlation between the 

2D patterns and the 3D principal plane patterns is very 

good despite the simplifications made from the 3D to the 

2D models. This example also serves to demonstrate the 

usefulness of 2D simulation to obtain first-order design 

results for problems that can be reduced to 2D analysis. 

 

 
 

Fig. 16. 2D and 3D models of X-band flared horn 

antenna. 

 

 
 

Fig. 17. E- and H-plane radiation patterns of an X-band 

flared horn antenna. 
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VII. CONCLUSION 
The aim of this paper is to augment an equivalence 

principle-based technique earlier published by the 

author, for simplifying the calculation of radiation from 

arbitrarily shaped aperture antennas when the electric 

field distribution in the aperture is known. Traditionally 

the Green’s function specific to the problem had to be 

derived, but with the new technique the aperture can be 

short-circuited and the free space Green’s functions (i.e., 

the free space radiation integrals) can be used to 

calculate the fields radiated from the aperture in the 

presence of the arbitrarily shaped surrounding antenna 

structure. The validity of this technique is demonstrated 

and the examples presented provide valuable insight into 

the mechanics of the equivalence principle and the 

concept of placing a conductor in the null field region of 

surface equivalence problems.  

The author would also, in conclusion, like to present 

a brief overview of the arduous route the development of 

the new technique had taken. During the mid-1990s he 

had developed an elementary Electric Field Integral 

Equation free space MoM code for the design of certain 

types of antennas. As an afterthought he decided to add 

aperture antennas as well, because of its apparent 

simplicity. The problem was that although the electric 

field in the aperture is usually known, the magnetic field 

is not, and he soon found that for certain examples 

completely inaccurate results were obtained. Through 

trial and error he discovered that when the aperture is 

short-circuited and Ms is placed a small distance away 

from it, the free space calculated results agreed perfectly 

with measured and theoretical results. This was in direct 

contrast to all the textbooks he could find at the time, in 

which it was stated that the free space radiation integrals 

could not be applied to such problems, as discussed 

above. 

The author submitted a paper to a prominent antenna 

journal in August of 1996, but it was eventually rejected 

in March 1998, in hindsight for perfectly valid reasons. 

An opportunity then came along to present a paper on the 

topic at a local symposium in South Africa in September 

1998 [16], but there were no experts in the field who 

could venture an opinion either for or against it. The 

author then presented the same topic at the international 

AP Symposium in Orlando, Florida, in 1999 [17], to 

which he invited several recognised experts in the field 

of electromagnetic theory. At both of these presentations 

the author proceeded to show through examples that it is 

possible to use the free space radiation integrals to 

calculate radiation from arbitrarily shaped aperture 

antennas, and presented an admittedly somewhat 

heuristic mathematical approach in an attempt to prove 

the validity of the new technique. More importantly, 

however, the author mistakenly argued that the 

placement of a conductor in the null field of an 

equivalence problem was incorrect, as no current would 

be induced on the conductor and no ‘image’ could 

therefore ever be generated. At that stage he had not 

realised that although the total induced current would be 

zero in the null region, it is comprised of the sum of more 

than one source, as expressed by (5), and that the electric 

current density would indeed be short-circuited as 

discussed by Harrington and others. It was in fact this 

realisation that had eventually led to the technique 

presented in this paper ([1, Section 2], Section II above). 

Needless to say, no support for or interest in the proposed 

technique was expressed during these presentations. 

The author then derived a new theoretical ‘proof’ of 

the new technique based purely on a mathematical 

manipulation of the free space radiation integrals [1, 

Section 3], that did not rely on the placement of a 

conductor in the null field of the equivalence problem. 

He next contacted Prof. Sembiam Rengarajan, whom he 

had met before and who generously agreed to work 

through the paper the author intended to submit to the 

IEEE Antennas and Propagation Society Magazine. 

After a couple of months of back-and-forth 

correspondence, it was agreed that the paper was 

probably suitable for submission to the Magazine, which 

the author proceeded to do. The author was soon 

afterwards contacted by Prof. Joseph Mautz, who had 

been appointed as Reviewer of the paper, but was 

concerned that he might not be able to completely follow 

the author’s arguments. He graciously suggested that the 

author and he correspond about the contents of the paper, 

which resulted in a series of friendly battle-of-wits 

exchanges until he was finally prepared to accept the 

paper for publication (see [1]).  

Due to an apparent lack of recognition of his 

proposed technique, the author decided to take another 

look at it during the latter half of 2015, with the emphasis 

on the calculation of the actual induced electrical current 

density in the short-circuited aperture, as demonstrated 

by the examples presented above. It was during this 

process that he managed to demonstrate the validity of 

the “short-circuiting” concept (Section II), which is now 

reconciled with the conductor-in-the-null-field approach 

presented in practically all antenna textbooks that deal 

with aperture theory. In his opinion the value of this 

paper is not only to present confirmation of the new 

technique he had discovered earlier, but also to provide 

students with additional insight into the application of 

the equivalence principle to a specific class of antenna 

radiation problems. 
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