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Abstract ─ We consider a modified combined tangential 

formulation (MCTF) for stable and accurate analysis of 

plasmonic problems involving metallic objects modeled 

as penetrable bodies. For a wide range of negative 

real permittivity values, corresponding to varying 

characteristics of metals at THz, infrared, and visible 

frequencies, MCTF provides accurate solutions in 

comparison to the conventional formulations for 

penetrable objects. We further show that, for structures 

with subwavelength dimensions, penetrable models 

formulated with MCTF can be essential for accurate 

analysis, rather than the perfectly conducting 

formulations, even at the lower THz frequencies. 

Index Terms ─ Plasmonic problems, scattering, surface 

integral equations. 

I. INTRODUCTION
Most metals at optical frequencies are known to 

possess plasmonic properties, which can be employed in 

diverse applications, such as sensing, energy harvesting, 

optical links, and super-resolution. In parallel with this, 

for numerical modeling of plasmonic structures involving 

arbitrary geometries, traditional solvers have been 

modified to handle negative permittivity values that can 

be used to represent metals at optical frequencies [1]. 

While volume formulations are mostly used in this 

area, plasmonic problems with increasing complexity 

and sizes often need more efficient solvers that are based 

on surface formulations [2]–[5]. In fact, if the structures 

can be represented as homogeneous or piecewise 

homogeneous objects, surface integral equations can 

provide the desired efficiency without sacrificing the 

accuracy. On the other hand, since most of the 

formulations have been developed for ordinary dielectric 

and magnetic objects [6], new numerical problems arise 

when the traditional solvers are employed to analyze 

plasmonic structures. 

As a background of this study, we refer to [7] and 

[8], where we showed that the conventional formulations 

may require very dense discretizations with respect to 

wavelength in order to obtain sufficient accuracy for 

plasmonic objects, while some formulations even break 

down as the negative permittivity increases. Therefore, 

we need more accurate and stable formulations that can 

be used in wide ranges of permittivity values, especially 

for increasingly large negative permittivities to close the 

gap towards perfect electric conductor (PEC) models. 

We recently introduced a modified combined tangential 

formulation (MCTF) that falls into this category and we 

showed the advantages of MCTF over other penetrable 

formulations for plasmonic structures of several 

wavelengths [10]. Specifically, MCTF provides accurate 

and stable solutions for large permittivity values that are 

typical at the infrared and higher THz frequencies. In this 

contribution, we further show the advantages of MCTF 

at much lower frequencies. When the frequency drops to 

lower THz ranges, PEC models are assumed to be valid, 

while this is not true if the dimensions of the structures 

are very small with respect to wavelength. Therefore, 

penetrable formulations may still be needed, even when 

the frequency is low. As shown in this letter, MCTF can 

also provide accurate analysis of such subwavelength 

metallic objects, in comparison to the conventional PEC 

models and their typical formulations with the electric-

field integral equation (EFIE). 

II. MCTF FOR DIFFERENT REGIMES
MCTF is a tangential formulation, similar to the

combined tangential formulation (CTF) and the variants 

of the Poggio-Miller-Chang-Harrington-Wu-Tsai 

(PMCHWT) formulation. Hence, with the low-order 

discretizations employing the Rao-Wilton-Glisson 

functions and Galerkin scheme, it naturally provides 

more accurate solutions than the normal and mixed 

formulations [9], such as the electric and magnetic 

current combined-field integral equation (JMCFIE). For 

plasmonic problems involving structures comparable to 

wavelength, the advantages of MCTF are its higher 

efficiency in comparison to PMCHWTs, its better 

stability in comparison to CTF, and its better accuracy in 

comparison to JMCFIE and similar normal/mixed 

formulations [10]. 

In the frequency domain, matrix equations derived 
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from MCTF can be written as [10]: 
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where ,o pT and ,o pK are the electric-field integral 

operator and the magnetic-field integral operator, 

respectively, which are tested tangentially ˆ ˆ( ),n n a a

i.e.,
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for u = o  (outer/vacuum) and u = p (inner/plasmonic). 

In the above, u u u   represents the intrinsic

impedance, 2ku u u u      represents the

wavenumber, and ( ) = exp( ) 4ug iku   r,r r - r r - r  is

the homogeneous-space Green's function. In addition, 

tm  and bn  represent testing and basis functions (the

same set of the RWG functions). The limit term in the 

MFIE operator is extracted, as usual. 

A. Fixed electrical size

Considering a metallic object with a fixed electrical

size, i.e., kD=constant, increasing negative permittivity 

( )R  leads to ( 0),p  ( ),pk i  and, 

lim 2, lim 0,p p
R R
  

  T I K (4) 

where ( ), ( ) .m n I = t r b r  Then, MCTF turns into EFIE as: 
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where the second row makes the magnetic current zero 

(due to vanishing small right-hand side of this row). With 

a well balance of the matrix blocks [10], convergence to 

EFIE is achieved via a vanishing ,p p T  hence without

a numerical problem. We note that all penetrable 

formulations should reduce into an appropriate PEC 

form; however, this can be numerically difficult for 

many conventional formulations. The limiting process is 

useful to show the stability of MCTF as the frequency 

goes down for a fixed electrical size and the object 

becomes PEC. 

B. Fixed metric size

For an object with a fixed metric size, decreasing

frequency has a different effect, since the material tends 

to become perfectly conducting, but at the same time, 

the object becomes electrically small. In fact, there is 

a balance between material and size, i.e., 0,

,R  0,p  ~ constant,pk  and, 

~ ( ), ( ) ( ) ,p p m n uc g      T t r b r r,r (6) 

The constant c in (6) depends on the type of the metal 

and the model used (Drude, Lorentz-Drude, etc.). But, the 

bottomline is that MCTF in (5) does not converge into 

a PEC formulation. In fact, localization of the inner 

interactions as the negative permittivity increases is 

balanced with the decreasing electrical size of the object. 

Therefore, MCTF provides more correct interpretation 

of the physical problem, while using a PEC model and a 

related integral equation may lead to deviating results, as 

shown below. 

III. NUMERICAL RESULTS
First, we consider the stability and accuracy of MCTF 

for a fixed electrical size. Fig. 1 presents the results of 

scattering problems involving plasmonic spheres of 

diameter 1.04 .o  For the relative permittivity, we consider

different values ( ),r R i    where 
R changes from

–512 to 32. The spheres are illuminated by plane waves.

For numerical solutions, the problems are discretized

with 10o triangles, leading to matrix equations 

involving 2166 unknowns. In addition to different 

formulations, the problems are solved via Mie series to 

obtain reference values. In Fig. 1, the relative error in the 

far-zone electric field and the number of GMRES 

iterations (for 410  residual error, without preconditioning

and restart) are plotted with respect to 
R . For positive

values of 
R , it can be observed that the accuracy

deteriorates as the contrast increases, as a result of 

increasing geometric deviation, integration problems, 

formulation issues (unbalanced blocks, ill conditioning, 

etc.), or the combination of these problems. Focusing on 

the negative values, we observe that JMCFIE results 

have very large errors that become relatively smaller, but 

still significant, as the contrast increases. In the same 

direction (increasing contrast), the error of CTF increases 

dramatically up to around 20% when 512.R    

Interestingly, the number of iterations for CTF drops, 

showing that the increasing error is not related to 

conditioning. MCTF has the same accuracy as PMCHWT 

and its scaled (balanced) version PMCHWT-S. All these 

these formulations provide quite stable results in terms 

of the accuracy for all negative values of 
R . On the

other hand, MCTF requires less iterations than PMCHWT 

(especially for small values of negative
R ) and

PMCHWT-S (especially for large values of negative 

R ). Hence, in terms of the efficiency, MCTF is more

reliable than PMCWHTs for plasmonic simulations. 
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Fig. 1. Solutions of scattering problems involving spheres 

of diameter 1.04 .o  Far-zone relative errors and iteration

counts are investigated with respect to the relative real 

permittivity values. 

Fig. 2. Solutions of scattering problems involving a 

silver sphere of diameter 5 m . Far-zone relative errors 

in numerical solutions are investigated with respect to 

the frequency. Reference solutions are obtained by using 

Mie-series for plasmonic (silver) and PEC cases. 

Next, we consider the stability and accuracy of 

MCTF for a fixed metric size. Figure 2 presents the results 

of scattering problems involving a silver sphere of 

diameter 5 m  illuminated by plane waves. The Lorentz-

Drude model is used for the relative permittivity of the 

silver. In Fig. 2, the relative errors (in the far-zone 

electric field) in the numerical solutions of MCTF and 

EFIE (PEC model) in comparison to the plasmonic Mie-

series solutions are plotted. In the 20–300 THz range 

(discretization size 0.12 m ), where the sphere size is 

approximately 0.33 5 ,o  the error in the EFIE solutions

decreases down to 2% as the frequency drops. However, 

as shown in the plot for the 0–40 THz range, the EFIE 

error increases back to 5% when the frequency further 

drops. The error in MCTF with respect to plasmonic 

Mie-series solutions is mostly below 1% (larger errors 

occurs above 180 THz since the discretization size with 

respect to wavelength is large), while it is completely 

stable in the 0–40 THz range. Finally, as also shown in 

Fig. 2, EFIE is consistent with the PEC Mie-series 

solutions, indicating that the perfectly conducting model 

itself deviates from the physical (silver) model, despite 

the frequency drops down to several THz. 

IV. CONCLUSION
We present the accuracy and stability of MCTF 

for plasmonic problems involving metallic objects 

with negative permittivity values. Considering objects 

comparable to the wavelength, MCTF provides accurate 

solutions for different permittivity values, leading to 

stable plasmonic-to-PEC transition as the negative 

permittivity gets larger. We further show that, small 

objects with respect to wavelength may also require 

penetrable models (hence, MCTF) despite the frequency 

can be only in the order of several THz. These results on 

canonical objects make MCTF attractive for the analysis 

of metallic structures with different sizes at THz, infrared, 

and higher optical frequencies.     
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