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Abstract ─ In this paper, the effects of mutual coupling 

and antenna surface deformity in a conformal wedge-

shaped antenna array are compensated using a linear 

pattern correction technique. The problem is formulated 

to reduce the absolute distance between the actual 

(simulated) and the desired radiation patterns and to 

allow for null positioning control. The individual field 

patterns for the antenna elements are deformed due to 

changes in mutual coupling and the conformal surface. 

The deformed patterns of the individual antennas for 

specific bend angles are stored as lookup tables and 

interpolated to get the desired radiation pattern at  

any arbitrary bend-angle. The problem is linearly and 

quadratically constrained at the null points and 

performance compared with unconstrained optimization. 

The proposed solution for diminishing the effect of 

mutual coupling and surface deformity is independent of 

main lobe direction, type of individual antenna, array 

geometry, and spacing between antenna elements. The 

closed-form results are validated through Computer 

Simulation Technology (CST) for the wedge-shaped 

deformed dipole antenna array. The results for the 

proposed scheme are also assessed with the traditional 

Open Circuit Voltage Method (OCVM) and show 

superior compensation for deformity and the mutual 

coupling effects in conformal beam-forming arrays in 

terms of main beam direction, position and depth of 

nulls. 

 

Index Terms ─ Aerial platform, conformal antenna array, 

interpolation of patterns, least square estimation, mutual 

coupling compensation, radiation pattern correction. 
 

I. INTRODUCTION 
Modern 5G networks comprise heterogeneous 

systems overseeing massive data transfer capacities and 

with the high frequency of access points. In order to 

make these access points less noticeable to the natural 

eye, they would be required to conform in shape to 

everyday objects around us [1]. A conformal antenna 

array can be defined as an array that follows the surface 

of objects whose shape is defined by considerations other  

than electromagnetic [2]. 

Besides 5G wireless massive Multiple Input Multiple 

Output (MIMO) systems, spatial filtering achieved by 

conformal antenna array also has applications in radar, 

and target tracking [3]. Additionally, conformal antenna 

arrays can be used to replace numerous antennas 

protuberant from the surface of modern aircraft which 

are used for navigation, radar altimeter, instrument 

landing systems and various communication systems  

[1], [4]-[6] causing considerable mechanical strain and 

increased fuel ingestion. The need for conformal reception 

apparatuses is much higher for the large-sized openings 

that are required for capacities like military airborne 

observation radars and satellite correspondence [2].  

The surfaces, on which the conformal antennas  

are mounted, may not be sturdy structures and are 

susceptible to physical deformation because of natural 

changes. This flexing of surfaces will make the original 

positions of the antenna component change, resulting in 

changes in steering vector and Mutual Coupling (MC) 

among them and producing the radiation pattern conduct 

entirely unreliable [7], [8]. The subsequent pattern 

alteration may shift the location of the main beam and 

loss of null points which minimizes the expected gain of 

the antenna array and may render any Signal-Not-of-

Interest (SNOI) avoidance through the shaping of the 

radiation pattern. Researchers are, therefore, focusing on 

compensation techniques in order to accurately recovere 

the beam pattern and directivity of the antenna array to 

direct the nulls and the main beam to any wanted 

direction irrespective of the extent of the distortion of  

the conformal surface. Through defined employment of 

the broadside pattern and the nulls, with no power-driven 

movement of the antenna elements [2], high signal to 

noise plus interference ratio (SNIR) is attained.   

The impact of MC on the wire antenna (monopole 

antenna, dipole antenna etc.) in an array can be 

demonstrated through variations in their input 

impedances. This idea was first introduced by Gupta in 

[9], where an impedance matrix was utilized to relieve 

the impact of MC in a planar array of dipole antennas. In 

[10], [11], this method was used for Direction of Arrival 
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(DOA) signal estimation and adaptive nulling of 

interference. Hui in [11] modelled the MC using 

impedance matrix based on estimated current distribution 

and it was shown that the new method for modelling  

MC performs better in terms of DOA estimation. 

Notwithstanding, the impedance matrix was assessed 

under the supposition that the antenna will not radiate 

while open-circuited in the Open-Circuit Voltage Method 

(OCVM), which limits this technique to wire antenna 

elements only. 

Another technique called Linear Pattern Correction 

Method (LPCM) reduces the impacts of MC in antenna 

arrays through pattern adjustment by limiting the Mean 

Square Error (MSE) between the wanted and actual 

patterns [10]-[16]. The outcomes show that the complex 

excitations for array component assessed utilizing the 

LPCM are more powerful in alleviating the impacts of 

MC than OCVM [14],[19]. Since unconstrained LPCM 

attempts to decrease the MSE between actual and wanted 

patterns, its effect is less pronounced on patterns alongside 

directions where signal quality is low, i.e., along with 

null points.  

In [17], the genetic algorithm is used to determine 

the optimum antenna element excitation for a conformal 

array. In [11], a framework for radiation pattern synthesis 

is developed using convex optimization theory in order 

to optimize dual-polarized conformal arrays. However, 

both these techniques exhibit higher complexity than 

LPCM and would bring only marginal performance 

gains. 

In [3], [17], the phase compensation procedure is 

deployed to recovere the desired antenna array pattern 

for conformal antennas after incorporating the surface 

deformity and MC effect. In this method, the projection 

technique has been utilized to ascertain the measure of 

phase shift presented by every component in an array to 

arrive at the reference plane, which is then consolidated 

in the excitations to recovere the ideal pattern. No 

exertion has been done to recovere the nulls in this 

method and there is no control on the arrangement of 

sidelobes. In [15], the LPCM is implemented to deformed 

conformal antenna arrays utilizing the impedance matrix 

of the distorted antenna array acquired from [7]. Direct 

imperatives are additionally incorporated at the null 

points so as to govern their position and depth. This 

model when tried in CST for bigger deformations  

gives insufficient compensation. The radiation pattern 

compensation for conformal beamforming array with 

precise control at the desired direction is, therefore, an 

open research area and the focus of this paper. 

In the introduced work, a practical procedure is 

created and tested for absolutely controlling the array 

pattern of deformed conformal antennas through 

constrained optimization of LPCM. Both the linear and 

quadratic constraints have been considered. The effect  

of varying mutual coupling due to deformation is 

compensated using pre-calculated separately evaluated 

antenna patterns at various bend angles. The technique  

is independent of inter-element spacing and antenna 

element type and has been tested successfully for 

different deformation angles through interpolation of 

patterns and for different main beam directions. Even 

though the strategy is just tested here for wedge-shaped 

surfaces, it is independent of the surface geometry as 

long as the position and direction of the individual 

antenna component are accurately characterized.  

The remainder of the paper is organized as follows: 

In Section II, the problem is formulated. In Section III, 

the proposed solution for deformity and MC reduction is 

discussed. Section IV and V the results and their detailed 

analysis are presented. Section VI finally concludes the 

paper.  

Notation: All matrices are shown in boldface capital 

letters (E, A, V, etc.), vectors are represented by boldface 

small-case letters (w, b etc.), while all the scaler quantities 

are represented as normal letters. |∙|  represents the 

absolute value and ‖∙‖  represents the Euclidean norm. 

 

II. PROBLEM FORMULATION 
The physical layout of an 𝑁 -dipole conformal 

antenna array mounted on a wedge shape surface, formed 

along the XZ-plane, is shown in Fig. 1. The antenna 

elements are equally divided on either side of the wedge 

with equal inter-element spacing 𝑑 . The individual 

dipoles are oriented along Y-axis in order to increase  

the MC between them so that the effectiveness of the 

proposed algorithm can be better demonstrated. Bend 

angle Υ, between the surface of the wedge and X-axis, 

can be varied, resulting in pattern distortions due to 

change in antenna locations and orientations. This also 

affects the relative distances between the antenna 

elements and changes the MC. 
 

 
 

Fig. 1. A deformed wedge shape antenna array in XZ-

plane with eight dipole antennas and a bend angle Υ. 

 

The two planar wedge surfaces are considered 

inflexible and the deformity only occurs as the bend 

angle changes. The location of an individual element in 

antenna array along X and Z directions is measured by  
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the following equations respectively, 

       𝑥𝑛(𝑑, Υ) = (−(𝑁 − 1)
𝑑

2
+ (𝑛 − 1)𝑑) cos (Υ),   (1) 

𝑧𝑛(𝑑, Υ) = |(−(𝑁 − 1)
𝑑

2
+ (𝑛 − 1)𝑑)| sin (Υ), 

where 𝑛 = 1, ⋯ , 𝑁 . The position of all the antennas 

along the Y direction is assumed fixed. A three-

dimensional steering matrix is formed 𝐕 ∈ ℂ[𝑀×𝐽×𝑁] , 

with each element 𝑣(𝑚, 𝑗, 𝑛) given by: 

𝑣(𝜃𝑚, 𝜙𝑗 , 𝑛)

= 𝑒−𝑗
2𝜋
𝜆

[𝑥𝑛(𝑠𝑖𝑛𝜃𝑚𝑐𝑜𝑠𝜙𝑗)+𝑦𝑛(𝑠𝑖𝑛𝜃𝑚𝑠𝑖𝑛𝜙𝑗)+𝑧𝑛(𝑐𝑜𝑠𝜃𝑚)], 
(2) 

where 𝑥𝑛, 𝑦𝑛 and 𝑧𝑛 is the location of the 𝑛𝑡ℎ element in 

the array, 𝜃𝑚 ∈ {𝜃1, … , 𝜃𝑀}  is the elevation steering 

angle and 𝜙𝑗 ∈ {𝜙1, … , 𝜙𝐽} is the azimuth steering angle. 

M and J are the total numbers of elevation and azimuth 

angle points respectively.  

Individual element patterns for dipole antennas are 

concatenated to form a three-dimensional matrix P such 

that 𝐏 ∈ ℂ[𝑴×𝑵×𝑱]. The Array Pattern matrix 𝐀 is given 

as the element-wise product of matrix 𝐕  and P , i.e.,  

 𝐀 = 𝐕⨀𝐏. The field pattern 𝐄 at any arbitrary angle 𝜃𝑚 

and 𝜙𝑗  can be calculated as: 

𝐄(𝜃𝑚, 𝜙𝑗) = 𝐀(𝜃𝑚, 𝜙𝑗) 𝐰 (3) 

where 𝐰 represent the complex excitations to the antenna 

elements. For succeeding analysis, 𝜙𝑗  has been presumed 

static and the resulting patterns have been observed for 

the elevation angle 𝜃 only. 

When the bend angle Υ  changes due to external 

conditions, the whole array pattern distorts due to changes 

in MC and steering matrix 𝐕. The problem is to adapt the 

weights 𝐰 with changes in Υ so as to compensate for any 

radiation pattern errors due to distortion in the shape of 

the conformal surface. 

 

III. PROPOSED SOLUTION 

A. Procedure for compensation 

The flowchart presented in Fig. 2 predicts the 

approach implemented for deformity compensation and 

reduction of the MC effect. Here, the deformity is 

defined as changes in the position of individual antennas 

elements as the 𝜰 changes. A single dipole antenna is 

designed in CST Studio Suite and desired array pattern 

Ades ∈ ℂ𝑴×𝑵 is shaped by the element-wise product of 

the concatenated isolated pattern of individual element 

(taken from CST Studio Suite) with the steering matrix 

(𝑽).  The initial excitations wi  given to each array 

element are extracted by optimizing the pattern of the 

antenna that minimizes wi while having the main beam 

and null points at the desired positions. The optimization 

problem is written as: 

min
𝐰𝐢

     ∑ ‖𝐄des(𝜃𝑆𝐵)‖,
i

 

s. t.        𝐄des(𝜃𝑡𝑎𝑟) = 1, 

               𝐄des(𝜃𝑛𝑢𝑙𝑙) ≤ ϵ, 

(4) 

where 𝜃𝑡𝑎𝑟  and 𝜃𝑛𝑢𝑙𝑙  are the target and null directions 

respectively and 𝜖  is an arbitrary null depth. 𝐄des = 

𝐀des𝐰i is the required field pattern. The constraints here 

ensure that null point positions are precisely defined, and 

nulls are of sufficient depth to test between the algorithms. 

The compensation algorithms require individual antenna 

patterns 𝐏def incorporating the effect of deformation and 

MC, the desired pattern of array and location of the 

radiating antenna elements. It calculates the compensated 

weights 𝐰c, which mitigates the effect of deformity and 

MC. The compensated field pattern is given by Ec. 

 

B. OCVM and LPCM 

OCVM is the most commonly cited technique for 

compensation of MC and deformity effect in conformal 

arrays with wired antennas. In OCVM, dimensionless 

normalized impedance matrix  𝐙c is used to compensate 

for the MC by taking the product of its inverse 𝐙c
−1 and 

the open-circuited voltages 𝐯oc as the terminal voltage 

𝐯T = 𝐙c
−1𝐯oc  [9]. The closed-form expression for the 

impedances for wired antennas is obtained by assuming 

the antenna array as an 𝑁 −port network as explained in 

[13]. For more complex antenna elements, the moments 

method is used for obtaining 𝐙c. However, due to non-

zero antenna current under open-circuit, 𝐙c  fails to 

accurately model the antenna behaviour. This method, 

therefore, suffers from considerable error as the nulls are 

not only filled up but their positions are also shifted. For 

conformal antenna arrays, the situation gets even worse 

as the effect of small approximation errors for individual 

antennas is compounded as their patterns are combined 

with less than optimal phases and amplitudes. As a result, 

the final array pattern looks very different from the 

desired one. 
 

 
 

Fig. 2. The procedure adopted for compensating the 

effect of MC and surface deformity in conformal antenna 

arrays. 
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and deformation impact from array pattern is the Linear 

Pattern Correction Method (LPCM) which attempts to 

limit the Euclidean separation among actual and (𝐄def) 

and desired (𝐄des) field patterns. It aims to reduce the 

Mean Square Error (MSE) between the simulated 

deformed and desired APs as shown in the equation, 

   min
𝐰c

∑ ‖𝐀def𝐰c − 𝐀des𝐰i‖
2

𝜃 .             (5) 

In [14], it has been observed that the distorted pattern is 

recovered through matrix 𝐊 obtained as: 

  𝐊 = (𝐀def)
†𝐀des, 

    𝐰c = 𝐊. 𝐰i, 

            𝐄c = 𝐀def 𝐰𝐜, 

(6) 

where † indicates the pseudoinverse and is defined as 

(𝐀def)
† = 𝐀def

H (𝐀def𝐀def
H )−1. Here  𝐀def ∈ ℂM×N is the 

matrix containing defomed patterns of an individual 

element in array and 𝐄c ∈ ℂM×1 is the radiation pattern 

of corrected element patterns. The vector 𝐰i contain the 

initial excitations used to obtain desired array pattern, and 

𝐰c contain the recovered excitations which compensate 

for MC and antenna deformity. It is suggested to use  

the individual antenna patterns obtained from CST at 

required bend angle Υ values which are to be utilized as 

a lookup table for pattern compensation. As LPCM 

decreases the MSE between the patterns giving the same 

weight to all angles, the comparative error between the 

recovered pattern and desired one is much smaller at the 

main beam than the ones at the nulls. This is evident in 

the electric field radiation pattern plotted in dBs, where 

the nulls can be seen as shifted and the algorithm is 

shown to have little control over the depth of the nulls. 
 

C. Linear and quadratic constrained LPCM  

In order to precisely control the null depth and 

position, LPCM is modified by introducing either linear 

or quadratic constraints at those points on the pattern that 

needs to be recovered precisely. 

In Linearly Constrained (LC) LPCM,  the Euclidean 

distance between the simulated deformed pattern 𝐄def 

and desired pattern 𝐄des is minimized while constraining 

the pattern at some points (either null points or the peak 

sidelobe points) to find the compensated weights 𝐰c . 

The LC-LPCM optimization problem is written as: 

min
𝐰c

 ∑ ‖𝐀def𝐰c − 𝐀𝐏des𝐰i‖
2,

𝜃

   

       s. t.      𝐀c𝐰c = 𝐛,      
 

(7) 

where 

   𝐀𝐏c = [𝐀def(𝜃1), 𝐀def(𝜃2) ⋯ 𝐀def(𝜃𝑞)]T, 

     𝐄des = 𝐀des𝐰i, 
          𝐛 = [𝐄des(𝜃1), 𝐄des(𝜃2), ⋯ , 𝐄des(𝜃𝑞)]T .     

(8) 

Here, 𝐀c ∈ ℂ𝒒×𝑵 is a matrix containing the 𝑞 constraint 

vectors at desired constrained angles in the simulated 

deformed individual element pattern matrix and 𝐛 ∈
 ℂ𝒒×𝟏 is a vector of 𝑞 constraint points on desired array 

pattern. To find out the solution for (7) the objective 

function is expanded as: 

‖𝐀def𝐰c − 𝐄des‖2 = 𝐰c
H𝐀def

H 𝐀def𝐰c −

                    𝐰c
H𝐀def

H 𝐄des − 𝐄des
H 𝐀def𝐰c +

𝐄des
H 𝐄des .    

(9) 

The Lagrangian of (7) is formed by: 

ℒ(𝐰c, μ) = 𝐰c
H𝐀def

H 𝐀def𝐰c − 𝐰c
H𝐀def

H 𝐅des −

                      𝐀def𝐰c  + 𝐄des
H 𝐄des + μ(𝐀c𝐰c − 𝐛),  

(10) 

where μ is the Lagrangian multiplier. 

The closed-form solution for the above optimization 

problem is found by solving Karush-Kuhn-Tucker (KKT) 

conditions [18]. which are given as: 

1. Primal Constraint: 𝐀c𝐰c − 𝐛 = 0.  

2. Dual Constraint: μ ≥ 0. 

3. Complementary slackness: μ(𝐀c𝐰c − 𝐛) = 0. 

4. The gradient of Lagrangian with respect to 𝐰c 

vanishes: 

          
d

d𝐰c
ℒ(𝐰c, μ) = 0 

         2𝐰c
H𝐀def

H 𝐀def − 2𝐄des
H 𝐀def + μ𝐀c = 0. 

(11) 

Rewriting third and fourth KKT conditions in matrix 

form give: 

   [
2𝐀def

H 𝐀def 𝐀c

𝐀c 0
] [

𝐰c

μ ] = [2𝐄des
H 𝐀def

𝐛
]. (12) 

The above system of linear equations is solved for 

𝐰c as: 

            𝐰c = 𝐀c
†𝐛.                                         

(13) 

The linear constraints reduce the search space so that  

the solution satisfying the constraint is the only possible 

solution. Consequently, the compensated pattern performs 

well at the null points (constraint points) but does not 

care for the rest of the radiation pattern. As a result,  

a higher side-lobe level at the edges, away from the 

constraint points, can be observed. The error performance 

of LC-LPCM, however, improves with increasing the 

number of constraints chosen at the point evenly spread 

over the radiation pattern. However, there is an upper 

limit on the maximum number of constraint points 𝑞 ≤
𝑁. 

The problem is therefore modified to Quadratically 

Constrained Quadratic Programming (QCQP), which is 

given as: 

            min.
𝐰c

     ∑ ‖𝐀def𝐰c − 𝐀des𝐰i‖
2,

𝜃
 

              s. t.        |𝐀𝐜𝐰c − 𝐛|2 ≤ 𝛽,                                         

 
(14) 

here 0 ≤ 𝛽 ≤ 1 is a constraining factor, lower the value 

of 𝛽 smaller the search space. Since closed form solution 

of QCQP do not exist, the Newton-Raphson method  

is used to solve for the above optimization problem. 

Quadratic constraint allows a good compromise, 

enabling the corrected pattern to follow the desired 

pattern more closely while at the same time ensuring that 

the desired null depths are achieved. 
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D. Using LUTs to reduce complexity and storage cost 

In order to deal with the difficulty of evaluating the 

pattern of every element at different bend positions, 

lookup tables (LUTs) are used in computations in which 

these patterns are pre-calculated. Lookup table stores the 

patterns of each antenna element at all the combination 

of angles 𝜙 and θ, as well as for different bend angles Υ. 
The Electric field pattern illustrated in Fig. 3 changes 

with different bend angle Υ for the first array element. 

Clearly, at any angle (𝜃 ), the behaviour changes 

regularly with Υ and in-between values can be evaluated 

with interpolation. Different combinations of ∆Υ spacing 

and interpolation schemes are experimented with. It is 

found that the results generated with ΔΥ = 5𝑜 using 

cubic interpolation is reasonably accurate. The significant 

expense of figuring the individual array element pattern 

in the presence of MC and the effect of deformation 

occurred could be avoided by storing the simulated 

deformed pattern in LUTs for selected bend angles. The 

patterns at the rest of the flex angles can be accurately 

found through interpolation. Moreover, due to the 

geometric symmetry of the wedge-shaped conformal 

antennas only half of the patterns of the radiating element 

are required to be stored because in wedge shape the 

patterns of the elements are the flipped version of one 

another. 
 

 
 

Fig. 3. Electric field pattern magnitude at different bend 

angles for the leftmost (1𝑠𝑡) array element in an 8 element 

wedge-shaped array at an inter-element spacing of 0.3λ.  
 

IV. RESULTS AND DISCUSSIONS 
Eight element dipole antenna arrays have been  

used for simulation and analysis purposes. Inter-element 

spacing is kept at 0.3λ, so that the effect of MC is 

pronounced and the effectiveness of the proposed 

algorithm in mitigating it can be clearly demonstrated. 

3D EM analysis software (CST) is used for verification 

of the results. All the radiation patterns, such as desired, 

deformed coupled and the compensated one, are first 

evaluated in MATLAB and then validated through CST. 

Two types of patterns have been recovered: a broadside 

pattern having nulls at 30º and -30º and one with a steered 

the main beam towards 30º with nulls at 0º and 60º. 

 

A. OCVM and unconstrained LPCM compensation 
In Fig. 4 OCVM and unconstrained LPCM (UC-

LPCM) compensation results are shown when an 8-

element linear dipole array is deformed at 15º and 30º 

bend-angles. The desired field pattern as shown in Figs. 

4 (a) and 4 (b) is the optimized one for the linear array 

minimizing the sidelobe level. 

 

 
    (a) 

 
    (b) 

 

Fig. 4. OCVM and UC-LPCM compensation with the 

main beam at broadside for wedge shape dipole array at 

bend angles: (a) 15º and (b) 30º. 

 

In OCVM, an impedance matrix is employed to find 

weights for deformed CBA for its pattern to approach the 

desired pattern. One can see in Fig. 4 (b) that OCVM  

is not very effective in compensating for deformation 

and the MC effect. In fact, at greater deformation, the 

impedance matrix fails to model the effect of these 

impairments and the compensated pattern is very different 

from the desired one. On the other hand, the pattern 

recovery is very good when using the UC-LPCM method 

for both small and medium deformation. The only 
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drawback is that the null positions have shifted by a few 

degrees and its depth is also gone up to around -40dB  

as against -60dB obtained for the desired pattern. Since 

UC-LPCM assigns the same weight to errors at all the 

angles, greater accuracy is exhibited at the peak values 

in the log domain representation. It is, therefore, evident 

from Fig. 4 that the peak to null power ratio of the 

compensated radiation pattern has been greatly 

compromised.  

In Fig. 5, the results are presented for OCVM and 

LPCM compensation, however, the main beam is now 

shifted toward 30º. A wedge-shaped array is again flexed 

at 15º and 30º in Fig. 5 (a) and Fig. 5 (b) respectively. 
 

  
    (a) 

 
    (b) 
 

Fig. 5. OCVM and UC-LPCM compensation with the 

main beam centred at 30º for wedge shape dipole array 

at bend angles: (a) 15º and (b) 30º. 
 

When the main beam is shifted from broadside to 

any other angle, OCVM fails completely to recover the 

pattern. It is evident that the nulls are completely lost and 

the sidelobe levels are higher than -10dB. The results 

indicate that the changed current distribution due to MC 

and deformation cannot be accurately modelled by the 

impedance matrix. The results improve considerably  

for unconstrained LPCM with the sidelobes dropping 

below -20dB. However, little control is exhibited on the  

position and depth of the null points.  

The results of Figs. 4 and 5 shows that OCVM has 

limitations for pattern recovery of severely deformed 

wedge antennas. While the performance is bad along  

the broadside, it becomes worse when the main beam is 

steered away from it. On the other hand, UC-LPCM 

gives good pattern recovery for both broadside and the 

steered main beam, with good sidelobe suppression.  

The null position and its depth, however, is greatly 

compromised ( >-40dB ) for the steered main beam. 

 

B. Linear and quadratically constrained LPCM 
The algorithm works as long as the number of 

constraint points is less than the size of the array. To have 

a better trade-off between side-lobe level and nulls depth 

QC-LPCM results are presented, which shows the good 

recovery of constrained points as well as a lower side-

lobe level. The search space for QC-LPCM is reduced to 

a hyperplane defined by the constraints. This results in a 

solution that gives a better trade-off between the null 

point recovery and the side-lobe levels.  
 

 
    (a) 

 
    (b) 

 

Fig. 6. LC-LPCM and QC-LPCM compensation with the 

main beam at broadside for wedge shape dipole array at 

bend angles: (a) 15º and (b) 30º. 
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 (a) 

 
 (b) 

 

Fig. 7. LC-LPCM and QC-LPCM compensation with the 

main beam centred at 30º for wedge shape dipole array 

at bend angles: (a) 15º and (b) 30º.  

 

In Figs. 6 and 7, only the peak point on the main 

beam and the first two nulls on either side of the main 

beam are constrained. Although the mean square error 

(MSE) is greater than the unconstrained LPCM as 

expected, the main lobe to null difference is better 

preserved in LC-LPCM and QC-LPCM. 

 

C. Null depth comparison 

The nulls approaching capability of the above-

mentioned techniques are compared in Table 1. For 

broadside pattern, null at 30° and for steered main beam 

null at 0° has been considered for comparison and the 

desired null depth is assumed to be -60dB. Both LC-

LPCM and QC-LPCM give the best null recovery and 

are better than UC-LPCM, especially for greater distortion 

levels. 

 

D. Interpolation of patterns 

In order to show the effect of interpolation, a case  

is considered in which radiation pattern for bend-angle 

Υ = 18°is recovered through the interpolation of pre-

stored individual element patterns in Fig. 3. ΔΥ = 15° 

together with cubic interpolation is compared with  

UC-LPCM in Fig. 8 for pattern recovery. One can see  

that there is not much difference between compensated 

radiation patterns obtained from accurate pre-stored 

individual antenna patterns at 18° and the interpolated 

patterns. So interpolation can be used to reduce the 

storage data requirements of the proposed algorithm. 

However, the spacing between the bend angles ΔΥ needs 

to be kept within a reasonable range for interpolation to 

be reliable, as the results deteriorate greatly if  ΔΥ > 10°. 

 

Table 1: Null depth comparison of pattern recovery 

techniques 

Technique 
Broadside Main Beam at 30° 

Υ = 15° Υ = 30° Υ = 15° Υ = 30° 

OCVM -24dB -15dB -17dB -13dB 

UC-LPCM -53dB -34dB -40 dB -27 dB 

LC-LPCM -60dB -60dB -60dB -60dB 

QC-LPCM -55dB -51dB -55dB -52dB 

 

 
 

Fig. 8. Effect of interpolation for 18º wedge deformed 

dipole array. 

 

V. GENERAL DISCUSSION 
OCVM method is employed for the compensation 

of MC and the effect of surface deformity on the array 

radiation pattern. It is shown that only a partial broadside 

radiation patterns recovery is obtained, and the results 

for steered main-beam in directions away from broadside 

are not good at all. This is because the impedance matrix 

does not accurately model the effect of MC and 

deformation and the problem compounds away from the 

broadside. 

Unconstrained linear pattern correction through 

least square error (LSE) was also used to recover the 

original pattern of the conformal wedge array. Although 

pattern recovery was very accurate with the lowest MSE 

between the desired and compensated radiation patterns, 

there is little control on the position and depth of the 
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nulls. As a result, the nulls are partially filled up (-40dB 

for broadside main-beam pattern) and displaced from  

the required value by a few degrees. This is one of the 

simplest methods to recover the desired array pattern 

with analytical closed-form expressions for calculating 

the compensated weights.  

In order to achieve the maximum recovery at some 

points in patterns (such as nulls and side-lobe level 

points), LC-LPCM is investigated. Although the result is 

promising at constraint points, the algorithm exhibits no 

control at other points resulting in larger side-lobe levels. 

This behaviour is because of the search space becoming 

very limited with a small number of permissible solutions. 

QC-LPCM gives a better compromise by increasing the 

search space to hyper-surfaces formed by the constraints. 

Not only the nulls are recovered while maintaining a low 

side-lobe level, but a healthy gap between the main lobe 

and nulls is also obtained. 

Since the proposed methods require pre-stored 

individual element radiation pattern to be available, the 

effect of pattern interpolation is also investigated in order 

to reduce the storage cost. It is shown that by using an 

appropriate bend-angle spacing as pre-stored interpolation 

points, radiation pattern could be recovered at any 

arbitrary bend angle with only a marginal performance 

loss. 

 

VI. CONCLUSION 
From the above discussion, one can conclude that 

patterns can be recovered for wedge-shaped deformation 

of antenna arrays at large flex angles (up to 30°) using 

the constrained LPCM techniques. The proposed 

techniques only require prior knowledge of individual 

element patterns of desired and deformed arrays and can 

be used for different types of resonators.  It is shown that 

the proposed QC-LPCM and LC-LPCM algorithm had 

an increased peak to null power-ratio without unduly 

degrading the LSE. It was also shown that a few pre-

stored individual antenna patterns can be used to give  

the desired pattern at any arbitrary bend-angle through 

interpolation. 
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