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Abstract – The development of the finite element method
is traced, from its deepest roots, reaching back to the
birth of calculus of variations in the 17th century, to its
earliest steps, in parallel with the advent of computers,
up to its applications in electromagnetics and its flourish-
ing as one of the most versatile numerical methods in the
field. A survey on papers published on finite elements,
and on ACES Journal in particular, is also included.

Index Terms – Finite elements, history of computation,
numerical methods.

I. THE PRODROMES
If, by finite elements (FEs), we intend the piecewise

polynomial approximation of the solution of a partial dif-
ferential equation (PDE) with adequate boundary condi-
tions, then an exact date of its birth is known: January
1943. In an appendix to [1], Richard Courant (Figure 1),
who had already investigated finite differences (FDs) in
1928 [2], sketched in two pages the essence of FE as
intended above [3].

The paper was the written record of a dissertation
on the equilibrium and vibrations of 2D domains: plates,
membranes, and the like. The dissertation was held on
May 3, 1941, and submitted as a paper on June 16, 1942.
The matter treated in the appendix, the numerical solu-
tion of the problem, was indeed not included in the dis-
sertation.

While Courant founded the computational part of
FE, its essence was in the variational problem he was
addressing, and variational problems are much older
than FE.

Johan Bernoulli in 1696 proposed the problem of the
shortest time path connecting two points at different alti-
tudes A and B [4]. This was something Galileo Galilei
had already investigated, showing, experimentally, that
a straight path is slower than an arc of circumference,
but there was no proof that, in this latter, time was mini-
mum [5].

Indeed, Isaac Newton, Jakob Bernoulli, Got-
tfried Wilhelm von Leibnitz, Ehrenfried Walter von

Tschirnhaus, and Guillaume de l’Hôpital provided their
own solution. In particular, Leibnitz exploited a piece-
wise linear approximation, which was a first step in his
development of differential calculus, which he finally
published [6], independently and shortly before New-
ton [7]. The question on the priority of this development
lasted for decades. Leonhard Euler later worked on these
kinds of problems and developed a brand-new branch
of mathematics: the Calculus of Variations, a name sug-
gested to Euler by Joseph-Louis Lagrange.

Indeed, also the idea of approximating a 2D vari-
ational problem on a mesh of triangles is older than
Courant. Karl H. Schellbach in 1851 proposed a FE-like
solution for determining the surface S of minimum area
enclosed by a given curve by using a piecewise approxi-
mation of S on triangles [8].

A subsequent, important, step was done by John
W. Strutt, Lord Rayleigh, who proposed a variational
approach to the solution of PDEs with appropriate
boundary conditions, which is of boundary value prob-
lems (BVPs) [9]. This approach was later developed by
Walther Ritz, who conceived an approximation of the
BVP solution as a finite linear combination of continuous
functions [10]. One classical approach to FEs is indeed
called Rayleigh–Ritz method.

An alternative approach to FE is that based on the
idea of the minimization of an error defined in terms
of an orthogonality condition versus some appropriate
finite-dimensional sub-space. This technique was first
suggested by Boris G. Galerkin [11] and developed by
Alessandro Faedo [12], to what is now called a Faedo–
Galerkin approach to FEs.

Before Courant, an FEs harbinger is the tear method
introduced by Gabriel Kron, where a large and complex
system is reduced to a network of interconnected small
and simpler systems (1939). This was not indeed a solu-
tion of a PDE since the simple systems, the elements,
were exactly specified, and, hence, the issue was just the
algebraic interconnection [13]. Later, in 1941, Alexan-
der Hrennikoff solved plane elasticity problems by split-
ting up the domain into little finite pieces whose stiffness
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was just the algebraic interconnection [13]. Later, in 
1941, Alexander Hrennikoff solved plane elasticity 
problems by splitting up the domain into little finite 
pieces whose stiffness wasapproximated by ideal bars, 
beams, and springs [14]. Shortly later,Douglas 
McHenry exploited a similar lattice analysis [15], 
leading to solutions which were primitive in 
mathematical and physical terms, but which were 
clearly leading to something implying a piecewise 
linear approximation over square or cubic cells. 

John H. Argyris (Figure1) then began in the 1950s 
to put all these ideas together by developing further 
Kron’s technique and adding an approximation which 
was truly based on a variational method [16]. In the 
same years,Samuel Levy introduced an evolution of 
Hrennikoff and McHenry lattice models by analyzing 
the behavior of aircraft wings via an assembly of box-
elements comprising beams, torsion bars, rods, and 
shear panels [17]. Levy’s direct stiffness method had a 
great impact on aircraft structure analysis. 

Actually, it is interesting to note that, after the early 
mathematical developments, the main actors on FEs in 
the 1950sand 1960swere not mathematicians but 
engineers, concerned more with design issues of 
airplanes than onthe theoretical aspects of the method. 

 
II. EARLY FINITE ELEMENTS 

The first work truly embodying the essence of FEs 
and which can be pointed to as giving birth to the 
method is that of M. Jon Turner and co-workers [18]. In 
this paper, an attempt to exploit both a local 
approximation of the PDE of elasticity and an assembly 
strategy among local approximations was carried out, 
even if no variational principle was used. This paper 

was followed by the one by Ray W. Clough (Figure1) 
where the name FEmethod finally appeared [19]. 

In the 1960s,the engineering community started to 
recognize the usefulness of FEs in its variational 
formulation, whichis that of Rayleigh and Ritz, which, 
indeed, was applicable only to symmetric operators. In 
these years, aeronautics was the main application, and 
the Dayton Conferences on FEs held in 1965, 1968, and 
1970 were occasions of remarkable and innovative 
accomplishments. In these same years, the fact that FEs 
could also be applied to unsymmetric operators become 
clear, with the solution of Navier–Stokes equations by 
J. Tinsen Oden (Figure2) [20–22]. 

The first comprehensive textbook on FEs appeared 
in those same years, authored by Olgierd C. 
Zienkiewicz (Figure2) and Yau K. Cheung in 1967 
[23], shortly followed by one by Zienkiewicz alone 
[24]. 

Of course, these developments were made possible 
by the parallel development of digital computers, born 
around World War II, and of adequate programming 
languages, like FORTRAN introduced in 1954. 

In the late 1960s, FEs were ported to wave 
electromagnetic by Peter P. Silvester (Figure2)[25,26] 
and, about a decade later, the first FEs book devoted to 
electrical engineers was published [27].This is still, in 
its third edition, the bible of FEs for electrical 
engineers. 

While practice was going fast, theory lagged. The 
first proof of convergence of FEs might be traced to 
Feng Kang [28], but the paper, being in Chinese, was 
overlooked. A second paper focused on arigorous proof 
of convergence was published by M.W. Johnson and 
Richard W. McLay in 1968 [29]. Even if these are the 
first example of a rigorous theoretical approach to FEs, 

 
Fig. 1. Left to right: Richard Courant (1888–1972), John H. Argyris (1913–2004), and Ray W. Clough(1920–
2016). Fig. 1. Left to right: Richard Courant (1888-1972), John H. Argyris (1913-2004), and Ray W. Clough (1920-2016).

was approximated by ideal bars, beams, and springs [14].
Shortly later, Douglas McHenry exploited a similar lat-
tice analysis [15], leading to solutions which were prim-
itive in mathematical and physical terms, but which were
clearly leading to something implying a piecewise linear
approximation over square or cubic cells.

John H. Argyris (Figure 1) then began in the 1950s
to put all these ideas together by developing further
Kron’s technique and adding an approximation which
was truly based on a variational method [16]. In the
same years, Samuel Levy introduced an evolution of
Hrennikoff and McHenry lattice models by analyzing
the behavior of aircraft wings via an assembly of box-
elements comprising beams, torsion bars, rods, and shear
panels [17]. Levy’s direct stiffness method had a great
impact on aircraft structure analysis.

Actually, it is interesting to note that, after the early
mathematical developments, the main actors on FEs in
the 1950s and 1960s were not mathematicians but engi-
neers, concerned more with design issues of airplanes
than on the theoretical aspects of the method.

II. EARLY FINITE ELEMENTS
The first work truly embodying the essence of FEs

and which can be pointed to as giving birth to the method
is that of M. Jon Turner and co-workers [18]. In this
paper, an attempt to exploit both a local approximation
of the PDE of elasticity and an assembly strategy among
local approximations was carried out, even if no varia-
tional principle was used. This paper was followed by
the one by Ray W. Clough (Figure 1) where the name FE
method finally appeared [19].

In the 1960s, the engineering community started to
recognize the usefulness of FEs in its variational for-

mulation, which is that of Rayleigh and Ritz, which,
indeed, was applicable only to symmetric operators. In
these years, aeronautics was the main application, and
the Dayton Conferences on FEs held in 1965, 1968,
and 1970 were occasions of remarkable and innovative
accomplishments. In these same years, the fact that FEs
could also be applied to unsymmetric operators become
clear, with the solution of Navier–Stokes equations by J.
Tinsen Oden (Figure 2) [20–22].

The first comprehensive textbook on FEs appeared
in those same years, authored by Olgierd C. Zienkiewicz
(Figure 2) and Yau K. Cheung in 1967 [23], shortly fol-
lowed by one by Zienkiewicz alone [24].

Of course, these developments were made possible
by the parallel development of digital computers, born
around World War II, and of adequate programming lan-
guages, like FORTRAN introduced in 1954.

In the late 1960s, FEs were ported to wave electro-
magnetics by Peter P. Silvester (Figure 2) [25, 26] and,
about a decade later, the first FEs book devoted to electri-
cal engineers was published [27]. This is still, in its third
edition, the bible of FEs for electrical engineers.

While practice was going fast, theory lagged. The
first proof of convergence of FEs might be traced to
Feng Kang [28], but the paper, being in Chinese, was
overlooked. A second paper focused on a rigorous proof
of convergence was published by M.W. Johnson and
Richard W. McLay in 1968 [29]. Even if these are the
first example of a rigorous theoretical approach to FEs,
the tools we are now familiar with are a little older; sim-
ply, they were not explicitly applied.

Distribution theory, which indeed is at the basis of
FE theory, was developed by Sergej L. Sobolev in 1936,
when he introduced generalized functions to work with
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the tools we are now familiar with are a little 
older;simply, they were not explicitly applied. 

Distribution theory, which indeed is at the basis of 
FE theory, was developed by Sergej L. Sobolev in 
1936, when he introduced generalized functions to 
work with weak solutions of PDEs[30]. Later,Laurent 
Schwartz, in the 1940s, put together a sound theory of 
distributions [31,32]. 

PDE theory and approximation theory in the 
mathematical world remainedseparate from variational 
methods and, hence,from FEapplication up to late 
1960s, when FEmethodology and the theory of PDE 
approximation via functional analysis finally unite. 

Then, in the 1970s,a great leap forward was done 
in the mathematical background of FEs: a-priori error 
estimator came out, elliptic linear problems were fully 

known, while parabolicand hyperbolic problems, also 
non-linear, were at their beginning in the FEs’ world. 

Element interpolation characteristics were studied 
by Miloš Zlámal [33] followed by a 
fundamentalcomprehensive work by Ivo M. Babuška 
and A. Kadir Aziz [34], where Sobolev spaces and 
elliptic problems arecomprehensively treated in anFE 
framework. 

 
III. ELECTROMAGNETICS 

Early applications to wave electromagnetics, 
developed after [25], tried to handle the vector nature of 
the fields by treating them component-by-component. 
Unfortunately, all these early vectorial methods were 
plagued by the occurrence of spurious modes, 
whicharesolutions of the numerical FEM problem 

 
Fig. 2. Left to right: J. Tinsley Oden (1936– ), Olgierd C. Zienkiewicz (1921–2009), and Peter P. 
Silvester(1935–1996). 

 
Fig. 3. Left to right: A. Kadir Aziz (1923–2016), Jean-Claude Nedelec (1943– ), and Zoltan Cendes (1946– ). 

Fig. 2. Left to right: J. Tinsley Oden (1936-), Olgierd C. Zienkiewicz (1921-2009), and Peter P. Silvester (1935-1996).

weak solutions of PDEs [30]. Later, Laurent Schwartz,
in the 1940s, put together a sound theory of distributions
[31, 32].

PDE theory and approximation theory in the mathe-
matical world remained separate from variational meth-
ods and, hence, from FE application up to the late 1960s,
when FE methodology and the theory of PDE approxi-
mation via functional analysis finally unite.

Then, in the 1970s, a great leap forward was done
in the mathematical background of FEs: a-priori error
estimator came out, elliptic linear problems were fully
known, while parabolic and hyperbolic problems, also
non-linear, were at their beginning in the FEs’ world.

Element interpolation characteristics were studied
by Miloš Zlámal [33] followed by a fundamental com-
prehensive work by Ivo M. Babuška and A. Kadir Aziz
[34], where Sobolev spaces and elliptic problems are
comprehensively treated in an FE framework.

III. ELECTROMAGNETICS
Early applications to wave electromagnetics, devel-

oped after [25], tried to handle the vector nature of
the fields by treating them component-by-component.
Unfortunately, all these early vectorial methods were
plagued by the occurrence of spurious modes, which are
solutions of the numerical FEM problem which were
non-physical [35].

An early analysis of spurious modes, which indeed
were present also in FDs [36], can be found in Adalbert
Konrad’s Ph.D. thesis [37] and in his paper where he first
solves the vector curl–curl equation [38]. His analysis
suggested that spurious modes were solutions, where the
energy norm on the domain vanishes, but boundary con-

ditions are not satisfied, and this was due to a lack of
solenoidality of the FEM procedure.

Subsequent efforts on enforcing the vanishing of
∇ ·B removed part of the spurious modes. Much research
was done in this area by applying a penalty parame-
ter effectively pushing spurious modes eigenvalues out
of the range of interest yet having negligible effect on
physical modes [39]. The issue on selecting the right
value for the penalty parameter was addressed in [40];
yet, it was finally proven [41] that the curl–curl scheme
inevitably led to spurious modes difficult to handle even
with penalty scheme, while Helmholtz equation has spu-
rious modes too, but these were ruled out by enforcing
physical boundary conditions.

Jon P. Webb and Konrad applied a different app-
roach based on an a-posteriori imposition of a set of
constraints on the equation to guarantee solenoidal-
ity [42, 43]; however, this approach did not prove
general.

In the same years, the concept of edge elements was
developed by Jean-Claude Nedelec and others [44–48].
Edge elements do not over-constrain continuity of the
field at element nodes but just enforce the physical con-
tinuity of the tangential field component at the edges,
easily handling dielectric interfaces. Yet, these edge ele-
ments’ origin can be traced back to an FE unrelated work
by Hassler Whitney few decades older [49].

These elements finally lead to a more accurate rep-
resentation of the field in terms of element bases, getting
rid of the spurious modes which had plagued the method
in the beginning [50].

Current state-of-the-art elements not only exclude
spurious modes [51] but also allow to consider the
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the tools we are now familiar with are a little 
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plagued by the occurrence of spurious modes, 
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Fig. 2. Left to right: J. Tinsley Oden (1936– ), Olgierd C. Zienkiewicz (1921–2009), and Peter P. 
Silvester(1935–1996). 

 
Fig. 3. Left to right: A. Kadir Aziz (1923–2016), Jean-Claude Nedelec (1943– ), and Zoltan Cendes (1946– ). 

Fig. 3. Left to right: A. Kadir Aziz (1923-2016), Jean-Claude Nedelec (1943- ), and Zoltan Cendes (1946- ).

divergent behavior of the electromagnetic field at edges
and tips [52, 53].

Another key point in FE development in the 1970s
and 1980s was handling unbounded radiation problems,
FE being of course applicable only on domains of finite
extension. Two lines of development emerged. In the
first, the description of the field outside the finite domain
was done in terms of a modal expansion (unimoment
method [54], transfinite element method [55], and by
moment method [56]) or in terms of an integral rep-
resentation (FEs/boundary integral [57], FEs/method of
moments [58], and field-feedback formulation [59]), but
these were plagued by non-physical solutions too, that is,
interior resonances [60]. Furthermore, these conditions,
called exact were of global nature and spoiled the spar-
sity of the solving matrix. In the second line, local condi-
tions – hence not spoiling sparsity – were enforced on the
boundary assuming a far-field behavior. These so-called
absorbing boundary conditions (ABC) are approximate,
due to the far field assumption, and must be placed at a
distance from the scatterer to have good accuracy; yet,
they rapidly gained popularity either in 2D [61] or in 3D
[62]. Another approach, in this contest, is that of adding
a layer of absorbing material, either realistic [63] or ficti-
tious and, hence, only numerical [64]. This latter, the so-
called perfectly matched layer (PML) gained the greatest
popularity in the end. Some wider insight on these devel-
opments can also be found in [65].

IV. MATURITY
By 1980, even if FEs have reached a good matu-

rity in mechanical and civil engineering and in electro-
magnetics was still struggling with spurious modes, sev-
eral “general purpose” codes began to be available to the

engineers to treat broad classes of linear and nonlinear
problems.

DYNA3D, originally developed by John O. Hal-
lquist at Lawrence Liver more National Laboratory
(LLNL), started in 1976 and became commercial in the
1980s.

ANSYS (ANalysis SYStems) ported its punched-
card codes to Apple II in 1980, allowing for a first true
graphical interface.

FEMAP was born in 1985 as a pre- and post-
processor for one of the oldest codes, NASTRAN (NASa
STRucture ANalysis). NASTRAN itself was developed
by CSC and released to NASA in 1968. In 2001, NASA
made the code publicly available.

StressCheck, released in 1989, was one of the first
commercially available products to utilize the p-version
of the FEs for structural analysis. P-version implies the
possibly local increase of the order of the polynomial
FE bases within an element to achieve higher accuracy,
and is opposed to h-method, where the order of the bases
is fixed and higher accuracy is achieved by refining the
mesh into smaller elements.

In electromagnetism, Zoltan and Nicholas Cen-
des (Figure 3) founded Ansoft in 1984, marketing
HFSS (high frequency structure simulator). Ansoft, after
a long partnership with Hewlett-Packard, was finally
acquired by ANSYS in 2008. HFSS is currently the
standard, de facto, in FE analysis for electromagnetic
waves.

Modern software package, on the other hand, com-
prises many different solvers to provide the users with
maximum flexibility and multiphysics capabilities; so,
nowadays, most of the EM simulation suites do include
also FEs, as it is the case for CST, FEKO, COMSOL, etc.
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which were non-physical [35]. 
An early analysis of spurious modes, which indeed 

were present also in FDs [36],can be found in Adalbert 
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Fig. 4. Location of the 13 FEM workshops for microwave engineering editions. 

Fig. 4. Location of the 13 FEM workshops for microwave engineering editions.

[62]. Another approach, in this contest, is that of adding 
a layer of absorbing material, either realistic [63] or 
fictitious and, hence, only numerical [64]. This latter, 
the so-called perfectlymatchedlayer (PML) gained the 
greatest popularity in the end.Some wider insight on 
these developments can also be found in [65]. 

 
IV. MATURITY 

By 1980,even ifFEs have reacheda good maturityin 
mechanical and civil engineering andin 
electromagnetics was still struggling with spurious 
modes, several “general purpose”codes began to be 
available to the engineers to treat broad classes of linear 
and nonlinear problems. 

DYNA3D, originally developed by John O. 
Hallquist at Lawrence Livermore National Laboratory 
(LLNL), started in 1976 andbecame commercial in the 
1980s. 

ANSYS (ANalysis SYStems) ported punched-card 
codes to Apple II in 1980, allowing for afirst true 
graphical interface. 

FEMAP was born in 1985 as a pre- and post-
processor for one of the oldest codes, NASTRAN 
(NASaSTRucture ANalysis). NASTRAN itself 
wasdeveloped by CSC and releasedto NASA in 1968.In 
2001, NASA made the code publicly available. 

StressCheck, released in 1989, was one of the first 
commercially available products to utilize the p-version 
of theFEs for structural analysis. P-version implies the 
possibly local increase of the order of the polynomial 
FE bases within an element to achieve higher accuracy, 
and is opposed to h-method, where the order of the 

bases is fixed and higher accuracy is achieved by 
refining the mesh into smaller elements. 

In electromagnetism, Zoltan and Nicholas Cendes 
(Figure3) founded Ansoft in 1984, marketing HFSS 
(high frequency structure simulator). Ansoft, after a 
long partnership with Hewlett-Packard, was finally 
acquired by ANSYS in 2008. HFSS is currently the 
standard, de facto, in FE analysis for electromagnetic 
waves. 

Modern software package, on the other hand, 
comprises many different solvers to provide the users 
with maximum flexibility and multiphysics 
capabilities;so, nowadays, most of the EM simulation 
suites do include also FEs, as it is the case for CST, 
FEKO, COMSOL, etc. 

Finally, for electromagnetics, and for wave 
electromagnetics, I wish to remember the biannual 
workshop, fully dedicated to FEs for Microwave 
Engineering which originated by a collaboration 
between the University of Florence, Italy and McGill 
University of Montreal, Canada, where P.P. Silvester 
was a professor. The workshop totaled13editions, the 
last independent one being in Florence in 2016 
(Figure4). A full history of these workshops can be 
found in [66,67], while a deeper insight in the history of 
FEs in general can be found in [68]. 

 
V. ACES JOURNAL 

It is interesting to analyze the presence of FE in 
scientific literature and on ACES Journal in particular. 
The Scopus database offers the possibility of advanced 
searches [69]. By limiting the search to ACES Journal 

 
Fig. 5. Finite elements (red bars) and total papers (gray bars) per year published on ACES Journal and referred 
in Scopus. 
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Fig. 5. Finite elements (red bars) and total papers (gray bars) per year published on ACES Journal and referred in
Scopus.

Finally, for electromagnetics, and for wave electro-
magnetics, I wish to remember the biannual workshop,
fully dedicated to FEs for Microwave Engineering which
originated by a collaboration between the University
of Florence, Italy and McGill University of Montreal,
Canada, where P.P. Silvester was a professor. The work-
shop totaled 13 editions, the last independent one being in
Florence in 2016 (Figure 4). A full history of these work-
shops can be found in [66, 67], while a deeper insight in
the history of FEs in general can be found in [68].

V. ACES JOURNAL
It is interesting to analyze the presence of FE in

scientific literature and on ACES Journal in particular.
The Scopus database offers the possibility of advanced
searches [69]. By limiting the search to ACES Journal
(ISSN1054-4887), the total number of papers referred in
Scopus per year can be obtained and, by further lim-
iting the search to the paper containing the keyword
“Finite Element*” in any field, the number of papers
specifically dealing with FE is produced.
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The result of these queries is sketched in Figure5, showing in gray the total number of ACES papers indexed 

per year, starting from the first year where a paper on FE appeared (1989, just a single paper) up to 2021. While 

Scopus archives are apparently incomplete, since they index no paper at all in some years (1990 and 2000), they 

nevertheless provide an interesting insight: in the last 20years, the number of FE papers was never below 10% of 

the total published ACES papers, with an average of 19% anda peak of 42% in 2004. Graphs are on logarithmic 

vertical scale to better appreciate the number of papers when they are few. 

As a comparison, Figure6 reports a similar query with the keyword “Finite Element*” in any field on the whole 

Scopus database and on IEEEXplore;results are limited to journal papers, again in logarithmic scale. Up to 
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Fig. 6. Finite elements papers per year referred on IEEExplore (blue bars) and on Scopus (gray bars) per year.

The result of these queries is sketched in Fig-
ure 5, showing in gray the total number of ACES papers
indexed per year, starting from the first year where a
paper on FE appeared (1989, just a single paper) up to
2021. While Scopus archives are apparently incomplete,
since they index no paper at all in some years (1990 and
2000), they nevertheless provide an interesting insight:

in the last 20 years, the number of FE papers was never
below 10% of the total published ACES papers, with
an average of 19% and a peak of 42% in 2004. Graphs
are on logarithmic vertical scale to better appreciate the
number of papers when they are few.

As a comparison, Figure 6 reports a similar query
with the keyword “Finite Element*” in any field on the
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whole Scopus database and on IEEEXplore; results are
limited to journal papers, again in logarithmic scale. Up
to 1965, the presence of FE papers was sporadic; from
1966 to 2000, there was a steady increase, and from 2001
onwards, the increase was still present but less dramatic.
This is well in accordance with what was stated earlier
about the reach of maturity at the beginning of our cen-
tury. Figure 6 is currently used on a Ph.D. course on FEs
held both at the University of Florence and the Politec-
nico di Milano [70] and is derived from original bib-
liographical research in [71]. Small discrepancies with
[71] are due to the different database used and their ever-
going updates.

VI. CONCLUSION
A brief history of FE has been sketched, with a focus

on its earliest, pioneeristic developments, followed by
a bibliographical analysis on the number of FE papers
in open literature in general on IEEE journals and on
ACES Journal in particular. The latter, being committed
to computational electromagnetics, hosted in this last 20
years a remarkable number of papers dealing with FEs
and its applications.
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