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Abstract – In this article, a novel design of a quad-
band parasitic hat microstrip antenna is proposed for
multiband applications. The proposed antenna consists
of a rectangular patch of dimensions 30 mm×11 mm
cut with four L-shaped slots connected with a rect-
angular slot in the middle of the front side of the
antenna to form a parasitic hat based upon defected
microstrip structure. On the other side of the antenna,
a defected ground structure is integrated as five rect-
angular slots embedded in the ground plane with the
same width but with various lengths. The suggested
antenna is designed and fabricated on a substrate mate-
rial with an area of 45 × 40 mm2 with a thickness of
1.52 mm to generate four frequency bands. The pro-
posed antenna is fed by a microstrip transmission line.
The simulated radiation patterns, return losses, max-
imum gains, and efficiencies of the antenna are car-
ried out by using electromagnetic simulation software
based on the finite element method. The measured return
loss results validate that the suggested antenna can be
designed to cover the frequency ranges from (3.8464
to 4.1456) GHz for sub-7GHz 5G applications, (6.7
to 7.162) GHz for ultra-wideband applications, (9.1616
to 9.5187) GHz for maritime radio-navigation position-
ing systems, and (11.5421 to 16.4085) GHz for radio-
navigation satellite standards. The suggested antenna
is based upon defected ground structure and defected
microstrip structure techniques to improve the antenna
performance.

Index Terms – Defected ground structure, defected
microstrip structure, microstrip antenna, multiband, par-
asitic hat, slot antenna.

I. INTRODUCTION
In the last two decades, the microstrip patch antenna

has been widely used in multiband applications [1, 2],
because of its small and compact size, low profile,
lightweight, low volume, and low cost. Different tech-
niques have been used to increase the bandwidth of

the microstrip antenna, such as the defected structures
technique, which consists of two types; the first one is
the defected ground structure (DGS). The second type
is the defected microstrip structure (DMS). The DGS
is a periodic or non-periodic cascading defect configu-
ration embedded through the ground plane. The main
structure used to create DGS is the electromagnetic
band gap (EBG) [3]. The DGS is synthesized based
on a single or many defects with periodic or aperiodic
structures comparable to EBG. The DMS follows the
DGS behavior but without any cutting inside the ground
plane.

To enhance the microstrip antenna performance
in multi-band applications either the DMS [4], or the
DGS is used at the ground plane [5] or a combi-
nation of them [6]. In addition, other different tech-
niques have been suggested to obtain multiband appli-
cations to enhance the bandwidth of the conventional
patch antenna such as parasitic elements [7, 8]. With
the increase of many different wireless communica-
tion systems, it is desirable to integrate a single wire-
less device to cover multiple wireless applications such
as dual-band [9, 10], the triple band [11, 12], quad-
band [13], and penta-band applications [14]. In reference
[15], a dipole antenna and three microstrip slot anten-
nas have been designed operating at 10 GHz in the X-
band. In reference [16], a dual-slot radiating patch and
a combination of L and U shape DGS were proposed
to form a split ring structure and to get a tri-band DGS
antenna for multiband applications resonating at (1.57,
2.47, and 0.926) GHz. In reference [17], two groups
of five rectangular slots connected with each other by
a small strip were etched in the ground plane acting
as DGS to form a microstrip-fed printed slot antenna
to generate five operating frequencies for multiband
applications.

In this article, the main aim of the work is to use
a parasitic element, which is a non-radiating element
to be placed in front of the radiating patch to direct
the EM wave towards its direction. The design of a
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quad-band microstrip antenna with a parasitic hat
element with a microstrip line feed for multiband
applications is introduced. The designed antenna has
an overall dimension of (45 × 40 × 1.52) mm3. The
suggested antenna consists of four L-shaped slots
connected with a rectangular slot cut from a rectangular
shaped patch of dimensions (30 × 11) mm2. The first
two L-shaped slots on the right side of the patch are
connected with the other two L-shaped slots on the left
side of the patch with a rectangular slot in the middle
with a dimension (8 × 1) mm2 to form a parasitic hat
element in the front side of the antenna acting as DMS.
On the backside of the antenna, there is a defected
ground plane structure in the shape of five rectangular
slots of lengths of (6, 18, 30, 18, and 6) mm respectively.
All five rectangular slots have the same width of 3 mm to
enhance the bandwidth. The proposed antenna radiates
with four bandwidths for (S11< −10 dB) and seven
operating frequencies (4, 6.94, 9.39, 12, 12.93, 14,
and 15.5) GHz suitable for multi-band applications to
cover sub-7GHz 5G applications, ultra-wideband
(UWB) applications, maritime radio-navigation
positioning systems, and radio-navigation satellite
standards.

II. ANTENNA DESIGN AND ANALYSIS
A. Antenna geometry

The geometry layout of the suggested parasitic hat
antenna with DGS and DMS is shown in Fig. 1. The
antenna uses RO4350B as a substrate material having
a dielectric constant (εr = 3.66), a loss tangent (tanσ =
0.004), a dielectric thickness (hs = 1.52 mm), and copper
thickness (t = 0.035 mm).

As illustrated in Fig. 1, The overall area of the pro-
posed antenna is (45 × 40) mm2. The proposed parasitic
hat antenna is composed of four L-shaped slots etched
from a radiating rectangular shaped patch of a dimension
(30 × 11) mm2. Two L-shaped slots are on the right side
of the patch, and the other two slots are on the left side of
the patch. Four L-shaped slots are connected with a rect-
angular slot in the middle of a dimension (8 × 1) mm2.
The dimensions of the four L-shaped slots are the same,
(6 × 3) mm2. The parasitic hat patch antenna is located
on the top of the substrate, while the DGS five rectangu-
lar slots are etched at the bottom. The width of the five
rectangular slots is the same, (w=3mm) but their lengths
are different; the lengths of the first, second, third, fourth,
and fifth rectangular slots are (6, 18, 30, 18, and 6) mm,
respectively. The proposed antenna has a linearly polar-
ized characteristic at all operating frequencies. The pro-
posed parasitic hat microstrip antenna is investigated
by electromagnetic simulator software (high-frequency

structure simulator (HFSS)) based on the finite element
method (FEM) [18].
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Fig. 1. The geometry of the proposed parasitic hat antenna
(a) front view (patch) and (b) back view (ground).

All the parameters for the suggested antenna are
given in Table 1.

Table 1: Optimized parameters of the proposed parasitic
hat microstrip antenna
Para-
meter

Value
(mm)

Para-
meter

Value
(mm)

Para-
meter

Value
(mm)

Wg 40 b 3 L2 18
Lg 45 x 8 L3 30
hs 1.52 Lp 11 L4 18
W f 3.35 Wp 30 L5 6
L f 31 s 1 w 3
a 6 L1 6 - -

B. Design procedure
DGS and DMS have an essential role in broaden-

ing the bandwidth of the microstrip antennas. In this
section, they will be employed to choose the most suit-
able antenna structure to obtain a multiband antenna;
four design configurations were carried out. Fig. 2 shows
the design procedure of the ground plane, and patch by
using the four configurations. Fig. 3 shows the return loss
(S11) for the different configurations (from antenna 1 to
antenna 4).

As illustrated in Fig. 2 (a), in the first configu-
ration (antenna 1), five rectangular slots of the same
width but having different lengths are embedded in
the ground plane with a transmission line of length
36 mm. The resonance frequencies (3.2, 6.1, 11.2, 12.7,
and 16.8) GHz were obtained. Fig. 2 (b), in the sec-
ond configuration (antenna 2), (4.4, 6, 9.8, 11, 13.2,



ISMAIL, EL-AASSER, GAD: A PARASITIC HAT FOR MICROSTRIP ANTENNA DESIGN BASED ON DEFECTED STRUCTURES 570

and 14.8) GHz resonance frequencies are obtained by
adding a rectangular radiating patch of a dimension (30
× 11) mm2 in the front side of the antenna. On the
other side of the antenna 2, the five rectangular slots are
etched in the ground plane. The length of the rectangu-
lar patch (Lp) is chosen as approximately equal to half
of the wavelength at the resonant frequency and can be
calculated using the equations below [19]:

fs=
C

2LP
√

εre f f
. (1)

εre f f≈
εr+1

2
, (2)

where C is the speed of light in a vacuum, εr is the rela-
tive permittivity, εre f f is the effective relative permittiv-
ity, Lp is the length of the rectangular patch, and fs is the
fundamental resonant frequency.

To achieve multiband operation for the proposed
antenna, the lengths of DGS and DMS slots must be
around λg/2 for all operating frequencies (f) based on the
following equation:

λg=
C

f
√

εre f f
, (3)

where λ g is the guide wavelength [20].
The third configuration (antenna 3) of Fig. 2 (c) pro-

vides a wider bandwidth by employing a parasitic hat-
shaped embedded in the radiating patch by etching four
L-shaped slots of dimension (6 × 3) mm2. Two rect-
angular slots, with the dimension (3.5 × 1) mm2, are
removed from the rectangular patch. There is an only
individual rectangular strip with the dimension (1 × 1)
mm2 that connects between the upper and lower parts of
the radiating patch and acts as an inductively coupling.
The obtained antenna provides the resonance frequencies
(7.7, 9.4, 11.3, 15) GHz.

Finally, as shown in Fig. 2 (d) in the fourth con-
figuration (antenna 4), the desired parasitic hat multi-
band antenna is obtained by cutting a rectangular strip
of a dimension (1 × 1) mm2 that connects the upper and
lower parts of the antenna to form the proposed parasitic
hat antenna. It acts as a capacitively coupling to obtain
seven operating frequencies (4, 6.94, 9.39, 12, 12.93,
14, and 15.5) GHz with return losses ( −21, −17, −15,
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Fig. 2. DGS, DMS evolution configurations (a) antenna
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All the operating frequencies with the antenna
configurations (antenna 1 to antenna 4) are given in
Table 2.

Table 2: Antenna configurations (antenna 1 to antenna 4)
with their operating frequencies
Antenna configurations Frequency (GHz)
Antenna 1 3.2, 6.8, 11.3, 12.7
Antenna 2 4.4, 6, 9.8, 11, 13.2, 14.8
Antenna 3 7.7, 9.4, 11.3, 15
Antenna 4 (proposed) 4, 6.94, 9.39, 12, 12.93, 14,

15.5

III. RESULTS AND DISCUSSION
A. Return loss (S11)

The return loss is measured with Rohde and
Schwarz ZVB20 vector network analyzer (VNA), which
has a frequency range limited to 20 GHz. Fig. 4 displays

3 

 

frequencies are obtained by adding a rectangular radiating 

patch of a dimension (30 × 11) mm2 in the front side of the 

antenna. On the other side of the antenna 2, the five 

rectangular slots are etched in the ground plane. The 

length of the rectangular patch (Lp) is chosen as 

approximately equal to half of the wavelength at the 

resonant frequency and can be calculated using the 

equations below [19]: 

                         𝑓𝑠 =
𝐶

2𝐿𝑃√𝜀𝑟𝑒𝑓𝑓
   .                              (1) 

                         𝜀𝑟𝑒𝑓𝑓 ≈
𝜀𝑟+1

2
   ,                                (2) 

Where C is the speed of light in a vacuum, 𝜀�r is the 

relative permittivity, 𝜀�reff is the effective relative 

permittivity, Lp is the length of the rectangular patch, and 

fs is the fundamental resonant frequency.  

To achieve multiband operation for the proposed 

antenna, the lengths of DGS and DMS slots must be 

around λg/2 for all operating frequencies (f) based on the 

following equation:                  

                         λ𝑔 =
𝐶

𝑓��√��𝜀𝑟𝑒𝑓𝑓
    ,                           (3) 

Where λg is the guide wavelength [20]. 

The third configuration (antenna 3) of Fig. 2 (c) 

provides a wider bandwidth by employing a parasitic hat-

shaped embedded in the radiating patch by etching four L-

shaped slots of dimension (6 × 3) mm2. Two rectangular 

slots, with the dimension (3.5 × 1) mm2, are removed from 

the rectangular patch. There is an only individual 

rectangular strip with the dimension (1 × 1) mm2 that 

connects between the upper and lower parts of the 

radiating patch and acts as an inductively coupling. The 

obtained antenna provides the resonance frequencies (7.7, 

9.4, 11.3, 15) GHz. 

Finally, as shown in Fig. 2(d) in the fourth 

configuration (antenna 4), the desired parasitic hat 

multiband antenna is obtained by cutting a rectangular 

strip of a dimension (1 × 1) mm2 that connects the upper 

and lower parts of the antenna to form the proposed 

parasitic hat antenna. It acts as a capacitively coupling to 

obtain seven operating frequencies (4, 6.94, 9.39, 12, 

12.93, 14, and 15.5) GHz with return losses ( -21, -17, -

15, -16, -40, -22, and-43) dB, respectively for multiband 

applications. 

 

    
(a) (b) (c) (d) 

Fig.2. DGS, DMS evolution configurations (a) 

antenna 1, (b) antenna 2, (c) antenna 3, and (d) 

antenna 4. 

 
 
Fig.3. Simulated return loss (S11) for different 

configurations (antenna 1 to antenna 4). 

 

All the operating frequencies with the antenna 

configurations (antenna 1 to antenna 4) are given in 

Table 2. 

 

Table 2: Antenna configurations (antenna 1 to antenna 4) 

with their operating frequencies 

Antenna configurations Frequency (GHz) 

Antenna 1 3.2, 6.8, 11.3, 12.7 

Antenna 2 4.4, 6, 9.8, 11, 13.2, 14.8 

Antenna 3 7.7, 9.4, 11.3, 15 

Antenna 4 (proposed) 4, 6.94, 9.39, 12, 12.93, 

14, 15.5 

 

III. RESULTS AND DISCUSSION 

A. Return loss (S11) 

The return loss is measured with Rohde and 

Schwarz ZVB20 vector network analyzer (VNA), which 

has a frequency range limited to 20 GHz. Fig. 4 displays 

the fabricated antenna frontside, backside, return loss S11 

observed in VNA, and the antenna in the Anechoic 

Chamber. Fig. 5 shows the simulated and measured 

return loss S11 of the proposed multiband antenna. The 

simulated result shows a bandwidth from (3.8 to 16.4) 

GHz, whereas the obtained measured bandwidth is from 

(3.6 to 17.4) GHz.  

 

 
(a)                                               (b) 

  
(c) (d) 

Fig. 4. Fabricated proposed parasitic hat antenna (a) front
side (b) backside (c) return loss S11 observed in VNA (d)
the antenna in the Anechoic Chamber.



571 ACES JOURNAL, Vol. 37, No. 5, May 2022

the fabricated antenna frontside, backside, return loss
S11 observed in VNA, and the antenna in the Ane-
choic Chamber. Fig. 5 shows the simulated and mea-
sured return loss S11 of the proposed multiband antenna.
The simulated result shows a bandwidth from (3.8 to
16.4) GHz, whereas the obtained measured bandwidth
is from (3.6 to 17.4) GHz.

4 

 

Fig. 4. Fabricated proposed parasitic hat antenna (a) 

front side (b) backside (c) return loss S11 observed in 

VNA (d) the antenna in the Anechoic Chamber.           

 
 

Fig. 5. The simulated and measured return loss S11 of the 

proposed parasitic hat antenna. 

 

For verifying the full rectangular radiating patch 

antenna of dimension (30 × 11) mm2 with five 

rectangular slots as DGS is fabricated and shown in Fig. 

6. The return loss results (measured and simulated) for 

the fabricated rectangular patch antenna are illustrated in 

Fig. 7. 

 

 
                  (a)                                          (b)                         

Fig. 6. Fabricated full rectangular patch antenna with 

DGS (a) top view(b) bottom view 

 
Fig. 7. The simulated and measured return loss S11 of 

the rectangular patch antenna with DGS. 

B. Parametric study for the effect of parasitic spacing 

In this section, a parametric study for five different 

values for the spacing (s) between the patch and the 

parasitic hat element is shown. Fig.8 displays the 

simulated return loss S11 for different values for the 

spacing (s) between the patch and the parasitic hat 

element.  

 
 

Fig.8. The return loss S11 for five different values for 

spacing (s) between the patch and the parasitic hat. 

 

All five different values of the spacing (s) with the 

resonating frequencies and their return losses are given 

in Table 3.  

 

Table 3: Five different values of the spacing (s) with their 

resonating frequencies, and return losses 

Spacing 

(s)(mm) 

Resonating 

frequency (GHz) 

Return loss 

S11(dB) 

1 

(Proposed) 

4, 6.94, 9.39, 12, 

12.93, 14, 15.5 

-21, -17, -15, 

-16, -40, -22, -

43 

0.75 4,6.8,9.2,12,12.8, 

13.6,15.5 

-19, -17, -14, 

-15, -23, -20, -

34 

0.5 4,6.8,9.3,15.3 -24, -18, -16, 

-15, -37, -23 

0.25 4,6.7,9.3,11.8,13.5, 

15.4 

-24, -18, -16, 

-15, -37, -23 

0 

(Full patch) 

4.4,6,9.8,11,13.2, 

14.8 

-25, -26, -31, 

-16, -16, -42 

 

Table 3 shows that the proposed parasitic hat 
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B. Parametric study for the effect of parasitic spacing
In this section, a parametric study for five differ-

ent values for the spacing (s) between the patch and
the parasitic hat element is shown. Fig. 8 displays the
simulated return loss S11 for different values for the
spacing (s) between the patch and the parasitic hat
element.
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Fig. 8. The return loss S11 for five different values for
spacing (s) between the patch and the parasitic hat.

All five different values of the spacing (s) with the
resonating frequencies and their return losses are given
in Table 3.

Table 3: Five different values of the spacing (s) with their
resonating frequencies, and return losses

Spacing
(s)(mm)

Resonating
frequency (GHz)

Return loss
S11(dB)

1
(Proposed)

4, 6.94, 9.39, 12,
12.93, 14, 15.5

−21, −17, −15,
−16, −40, −22,

−43
0.75 4,6.8,9.2,12,12.8,

13.6,15.5
−19, −17, −14,
−15, −23, −20,

−34
0.5 4,6.8,9.3,15.3 −24, −18, −16,

−15, −37, −23
0.25 4,6.7,9.3,11.8,13.5,

15.4
−24, −18, −16,
−15, −37, −23

0
(Full patch)

4.4,6,9.8,11,13.2,
14.8

−25, −26, −31,
−16, −16, −42

Table 3 shows that the proposed parasitic hat
antenna (s = 1) is the best result.

C. Surface current distribution (Jsur f )
The current density distribution across the proposed

antenna lattice at multiple resonant frequencies is shown
in Fig. 9 (a)-(g).
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Fig. 9. Simulated surface current density distribution of 

the proposed antenna at (a) 4GHz, (b) 6.94 GHz, (c) 

9.39 GHz, (d)12 GHz, (e) 12.93 GHz, (f) 14 GHz, and 

(g) 15.5 GHz. 

D. Antenna radiation patterns, gain, and efficiency  

The radiation patterns of the proposed 

omnidirectional antenna at different bands in E-plane 

(Y-Z plane) and H-plane (X-Z plane) areas at different 

resonance frequencies are simulated, measured, and 

illustrated in Fig. 10. 
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Fig. 9. Simulated surface current density distribution of
the proposed antenna at (a) 4GHz, (b) 6.94 GHz, (c)
9.39 GHz, (d)12 GHz, (e) 12.93 GHz, (f) 14 GHz, and
(g) 15.5 GHz.

D. Antenna radiation patterns, gain, and efficiency
The radiation patterns of the proposed omnidirec-

tional antenna at different bands in E-plane (Y-Z plane)
and H-plane (X-Z plane) areas at different resonance
frequencies are simulated, measured, and illustrated in
Fig. 10.
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Fig. 11. (a) Simulated and measured maximum gain vs 

frequency, and (b) Simulated and measured radiation 

efficiency vs frequency for the proposed antenna. 

All simulated and measured values of maximum 

gain and efficiency of the proposed antenna are shown in 

Table 4. 

 

Table 4: The simulated and measured maximum gain, 

and efficiency of the proposed parasitic hat antenna  

Resonant freq. 

(GHz) 

Maximum 

Gain (dB) 

Efficiency 

(%) 

Sim. Meas. Sim. Meas. Sim. Meas. 

4 3.9 4.9 3.6 73.32 79.29 

6.49 7 6 5.5 95.2 86.11 

9.39 9.28 4.7 5.4 89.88 87.48 

12 11.7 6 6 94.94 91.75 

12.39 13 6.53 6 93.61 93.61 

14 13.8 6.57 4.9 98.97 95.43 

15.5 17 6 5.9 94.28 75.11 

 

A comparison of the obtained results of the 

proposed antenna with recently published work is given 

in Table 5. 

 

Table 5: Comparison of the proposed parasitic hat 

antenna with recently published work 
 

Ref. 

No. 

Antenna 

size (mm3) 

, Material 

Resonance 

freq. (GHz) 

Techniques 

[21] 45×45×1.6 

, FR4 epoxy 

5,6.8,7.5,8.5 

 

Parasitic 

element 

[22] 20× 30×1.6 

, FR4 epoxy 

2.26,3.6,5.3 

 

DGS 

, monopole 

[23] 27.5×20×1.5 

, FR4 epoxy 

2.44,3.55 

,5.6 

DMS 

, monopole 

[24] 58 ×48×0.8 

, FR4 epoxy 

2.2,2.3,2.5 DGS, 

Parasitic 

This 

work 

45 ×40×1.52 

, RO4350 

4, 6.94, 9.39, 

12, 12.93, 14, 

15.5 

DGS, DMS, 

Parasitic 

element 

 

VI. CONCLUSION 
In this article, a novel design of a microstrip patch 

antenna with a parasitic hat has been proposed for 

multiband applications such as sub-7GHz 5G 

applications, ultra-wideband (UWB) applications, 

maritime radio-navigation positioning systems, and 

radio-navigation satellite standards. The presented 

antenna has multiple bandwidths starting from 3.8 to 

16.4 GHz with less than −10 dB return loss (S11) within 

the region. Three methods of enhancing the performance 

of the rectangular microstrip patch antenna were 

employed. The measured operating frequencies are (3.9, 

7, 9.28, 11.7, 13, 13.8, and 17) GHz with return losses (-

21.4, -19.2, -22.5, -35.2, -25.2, -29.1, and -26.8) dB, 

respectively. In conclusion, the antenna achieves stable 

radiation patterns, higher radiation on efficiency, and 

broad bandwidth around the operating frequencies 0.29 

GHz with (7.48%) at 4 GHz, 0.462 GHz with (6.66 %) 

at 6.94 GHz, 0.3571 GHz with (3.823 %) at 9.39 GHz, 

0.96 GHz with (7.99 %) at 12 GHz, 0.97GHz with (7.4 

%) at 12.93GHz, 1.28GHz with (9.07 %) at 14 GHz, and 

1.66 GHz with (10.66 %) at 15.5 GHz. The simulated 

results show that the DGS, DMS, and parasitic elements 

are critical factors for improving the bandwidth of the 

proposed antenna.  
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All simulated and measured values of maximum
gain and efficiency of the proposed antenna are shown
in Table 4.

Table 4: The simulated and measured maximum gain,
and efficiency of the proposed parasitic hat antenna
Resonant freq.
(GHz)

Maximum
Gain (dB)

Efficiency
(%)

Sim. Meas. Sim. Meas. Sim. Meas.
4 3.9 4.9 3.6 73.32 79.29
6.49 7 6 5.5 95.2 86.11
9.39 9.28 4.7 5.4 89.88 87.48
12 11.7 6 6 94.94 91.75
12.39 13 6.53 6 93.61 93.61
14 13.8 6.57 4.9 98.97 95.43
15.5 17 6 5.9 94.28 75.11

A comparison of the obtained results of the pro-
posed antenna with recently published work is given in
Table 5.

Table 5: Comparison of the proposed parasitic hat
antenna with recently published work

Ref. No. Antenna size
(mm3),

Material

Resonance
freq. (GHz)

Techniques

[21] 45×45×1.6,
FR4 epoxy

5,6.8,7.5,8.5 Parasitic
element

[22] 20× 30×1.6,
FR4 epoxy

2.26,3.6,5.3 DGS,
monopole

[23] 27.5×20×1.5,
FR4 epoxy

2.44,3.55,5.6 DMS,
monopole

[24] 58 ×48×0.8,
FR4 epoxy

2.2,2.3,2.5 DGS,
Parasitic

This work 45
×40×1.52,

RO4350

4, 6.94, 9.39,
12, 12.93, 14,

15.5

DGS,
DMS,

Parasitic
element

IV. CONCLUSION
In this article, a novel design of a microstrip patch

antenna with a parasitic hat has been proposed for multi-
band applications such as sub-7GHz 5G applications,
ultra-wideband (UWB) applications, maritime radio-
navigation positioning systems, and radio-navigation
satellite standards. The presented antenna has multiple
bandwidths starting from 3.8 to 16.4 GHz with less than
−10 dB return loss (S11) within the region. Three meth-
ods of enhancing the performance of the rectangular
microstrip patch antenna were employed. The measured
operating frequencies are (3.9, 7, 9.28, 11.7, 13, 13.8,
and 17) GHz with return losses (−21.4, −19.2, −22.5,
−35.2, −25.2, −29.1, and −26.8) dB, respectively. In
conclusion, the antenna achieves stable radiation pat-
terns, higher radiation on efficiency, and broad band-
width around the operating frequencies 0.29 GHz with
(7.48%) at 4 GHz, 0.462 GHz with (6.66 %) at 6.94 GHz,
0.3571 GHz with (3.823 %) at 9.39 GHz, 0.96 GHz with
(7.99 %) at 12 GHz, 0.97GHz with (7.4 %) at 12.93GHz,
1.28GHz with (9.07 %) at 14 GHz, and 1.66 GHz with
(10.66 %) at 15.5 GHz. The simulated results show
that the DGS, DMS, and parasitic elements are criti-
cal factors for improving the bandwidth of the proposed
antenna.
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