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Abstract ─ Conformal Perfectly Matched Layer 

(PML) is a high-efficiency absorbing boundary 

condition for the finite element analysis of 

electromagnetic fields. Accurate calculation of 

normal direction of conformal PML is essential for 

the geometric modelling of conformal shell 

elements and constitutive parameters of conformal 

PML, especially for sophisticated and arbitrary 

shape scatterers. Consequently, a Non-Uniform 

Rational B-Splines (NURBS) arithmetic is 

proposed for describing the conformal surface 

accurately in this study. Based on the NURBS 

arithmetic, four weighted average formulas are 

presented for calculating the common normal 

direction of adjacent surface elements of 

conformal shell. Numerical experiments show the 

availability of NURBS arithmetic and precision of 

weighted average formulas in the geometrical 

modelling of conformal PML. 

 
Index Terms ─ Common normal direction, 

conformal PML, finite element modeling, NURBS 

arithmetic. 

 

I. INTRODUCTION 
As an efficient artificial absorbing media, 

conformal Perfectly Matched Layer (PML) has 

been attracting more and more attention since the 

half-space Cartesian PML is extended into 

conformal absorbing boundary of cylindrical and 

spherical geometries in approximate PML 

formulations by Kuzuoglu and Mittra [1]. The 

conformal mesh truncation defined by exact PML 

formulations [2-4], which encloses the scatterer a 

small distance away, is very advantageous for 

saving spatial scattering elements, especially in the 

Finite Element Method (FEM). In curvilinear 

coordinates and general orthogonal curvilinear 

coordinates, numerical efficiency of absorbing 

boundary conditions of complex geometries are 

improved by conformal PML with grid generation 

technique [5]. The dynamic stability of the 

Cartesian, cylindrical, spherical and conformal 

PMLs is analyzed and presented in [6] and [7]. 

Some basic conclusions have played an important 

role on the design of conformal PMLs. However, 

how to mesh the conformal shell elements well is 

still a basic issue for realizing and developing the 

conformal PML [8-10]. Accurate calculation of 

normal direction of conformal PML is a basic 

requirement for meshing the conformal elements, 

especially for the high-fidelity mapped shell 

(hexahedron) elements. Fortunately, Non-Uniform 

Rational B-Splines (NURBS), which possesses the 

excellent characteristics on defining the 

complicated surfaces and generating the 

curvilinear elements [11-13], is a valid scheme for 

describing the conformal surface and calculating 

the normal direction of conformal PML. 

The contents of this paper include the normal 

directional NURBS arithmetic of conformal PML, 

arithmetic implementation and numerical 

experiments, which demonstrate both the 

availability and precision of the arithmetic. 

 

II. FEM IMPLEMENTATION OF 

CONFORMAL PML 
In the FEM for electromagnetic scattering 

problems, the PML is an efficient mesh truncation 

boundary. As a more efficient absorbing boundary 

condition, the conformal PML is introduced for 

solving the computational scale problem of large-

size scatterer. The basic implementation steps of 

applying the conformal PML into FEM are 

presented as follows. 

Step 1. Mesh the outer surface of scatterer and 
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generate the basic surface elements of scatterer. 

(When the shape of scatterer is arbitrary or 

unknown, the basic surface of scatterer should be 

reconstructed accurately by the surface elements. 

NURBS in Section III is advantageous for this 

situation.) 

Step 2. Calculate the normal directions of nodes of 

basic surface elements and create the nodes of 

conformal surface along the normal directions, 

shown in Fig. 1. Because the precision and quality 

of conformal PML elements depend largely on 

these normal directions, this step is fundamental 

and key for computational accuracy and numerical 

efficiency of conformal PML. 

Step 3. Based on the nodes of conformal surface, 

generate one layer of shell elements of conformal 

PML, similarly generate multilayer of shell 

elements of conformal PML. 

Step 4. According to the geometric information of 

shell elements, compute the constitutive 

parameters  r  and  r  of conformal 

PML [2]. The matrix of   in local coordinate 

system (u,v,w) is given by: 
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ss 3 , s  is the complex stretching variable [9,10] 

in the w -direction. 1r  and 2r  are rincipal radiis 

[9,10] on the nodes of shell elements. 

Step 5. Apply the constitutive parameters of 

conformal PML to vector wave equations of 

scattering field: 
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Where s
E  is scattering electric field. After 

interface boundary conditions of conformal PML 

are applied, the conformal absorbing boundary is 

completed in the FEM. 

In the above implementation steps of 

conformal PML, the key step is to calculate 

accurately the normal directions of nodes of basic 

surface elements because the normal directions 

control the geometric shapes of conformal shell 

elements and constitutive parameters of conformal 

PML. Therefore, the calculation arithmetic of 

normal direction of conformal PML is presented in 

detail in the following sections. 

 

 
 

Fig. 1. Normal direction of conformal PML. 

 

III. NURBS SURFACE 
Since the Non-Uniform Rational B-Splines 

(NURBS) is introduced into the computational 

electromagnetic applications by Valle, Rivas and 

Citedra [14], it is always a quite sophisticated 

geometrical modelling method of arbitrary shape 

bodies and complex scatterers. As a quite powerful 

modelling tool, NURBS plays a fundamental role 

in integral and differential methods of 

computational electromagnetics. Presently, the 

rapid development of complex curve/surface 

construction and grid generation technique largely 

depends upon the progress of NURBS. 

In view of the advantage on the geometric 

description, NURBS shows great promise as an 

ideal discrete approximation for the complex 

surface, especially on the large curvature surface. 

Generally, numerical accuracy and efficiency of 

NURBS are very high for describing and 

constructing the basic surface of arbitrary shape 

scatterers. Therefore, in our work the NURBS is 

employed to describe the basic surface of scatterer 

and convex surface of conformal PML. 

In this section, we start by reviewing the basic 

definition of NURBS surface [15]; only the 

equations relevant to our implementation are 

presented. 

If a NURBS surface is pth order on u direction 
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and qth order on v direction, its piecewise rational 

vector function is expressed as: 
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Where  ,i jP  define control points on u and v 

directions,  ,i jw  are weighting factors,   ,i pN u  

and   ,j qN v  are nonrational B-splines basis 

functions defined on vector U and V respectively 

[15], 
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Where 1r n p   , 1s m q   . 

In (3), the numerator and denominator of 

piecewise rational vector function are respectively 

rewritten as: 
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Hence, first order partial derivative [15] of 

piecewise rational vector function is given by: 
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Where   indicates u or v partial derivative of 

 ,u vS . 

 

IV. NURBS ARITHMETIC OF COMMON 

NORMAL DIRECTION 
Using the NURBS, we generate accurately the 

basic surface elements of scatterer in step 1 (in 

Section II). Otherwise, the normal direction 

definition of nodes of basic surface elements 

becomes a very knotty problem when the shell 

elements of conformal PML will be generated in 

step 2 (in Section II). As following Fig. 2, the 

normal directions of adjacent surface elements are 

different on the common node O . For instance, on 

the common node O , the normal direction 
1Z  of 

element no.1 is defined by two tangential 

directions 
1uS  and 

1vS  of element no.1. Similarly, 

the normal directions of other adjacent surface 

elements are also obtained. 

 

 
 

Fig. 2. Normal direction of adjacent surface 

elements. 

 

In consideration of the conciseness of 

representation, the normal direction of the ith 

surface element on the node O  is unitized as: 
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Where  ,i u vZ  is the unit normal direction of 

the ith surface element on the common node O . 

uiS  and viS  are two tangential directions of the ith 

surface element on the common node O  

respectively. 

For calculating accurately the common normal 

direction of adjacent surface elements, four 

weighted average formulas are proposed. In these 

formulas, different weighting factors are 

introduced to present the contribution of normal 

directions of adjacent elements to the common 

normal direction. Moreover, some geometric and 

discretization impacts are also considered. The 

detailed weighted average formulas are described 

as following. 

(i) If the common normal direction is expressed 

as a simple average of normal directions of 

adjacent elements, the common normal 

direction is defined as: 
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Where n  is total number of adjacent surface 

elements. Actually, the weighting factor is 1.0 in 

(9). 
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(ii) Considering that the shapes of adjacent 

surface elements are important factors for the 

common normal direction, area percentages of 

adjacent elements are introduced as the 

weighting factors. Thus, the common normal 

direction is defined as: 
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Where 
i  is the area of the ith element. The area 

percentage 




n

i
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1

is the weighting factor of 

the ith element. This means that the common 

normal direction will be close to the normal 

directions of big elements. 

(iii) Considering that the geometric curvatures of 

adjacent surface elements are also important 

factors for the common normal direction, 

Gauss curvatures of surface elements are 

introduced as the weighting factors. Thus, the 

common normal direction is defined as: 
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Where 
i  is Gauss curvature of the ith surface 

element on the common node O . The curvature 

percentage 


n

i

ii

1

 is the weighting factor of the 

ith element. This means that the common normal 

direction will be close to the normal directions of 

large curvature elements. 

(iv) In order to ensure the geometric shape and 

computational precision of finite element, the 

size of conformal shell element must be so 

fine (1/10 wavelength) that the geometric 

information of element is enough for the 

discrete approximation on the large curvature 

domain. Therefore, area percentages and 

curvatures of surface elements should be 

considered globally. Based on the harmonic 

average formula, the common normal 

direction is defined as: 
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Where 
i  is Gauss curvature of the ith surface 

element. 
i  is the area of the ith surface element. 

The mixed percentage 
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n

i i

i
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i

1


is the 

weighting factor of the ith element. This means 

that the common normal direction will be close to 

the normal directions of large curvature (unsmooth) 

and small elements. 

 

V. NUMERICAL EXPERIMENTS 
In this section, in order to verify the modelling 

accuracy of NURBS arithmetic, we implement the 

arithmetic in two classical experiments. 

(1) Sphere, its diameter is 2 cm, as following Fig. 

3. 

(2) Ellipsoid, its major axis is 4 cm, its minor axis 

is 2 cm, as following Fig. 4. 

In the above experiments, all programs are 

developed in Matlab2009 compiled language. 

 

 
 

Fig. 3. Sphere. 

 

 
 

Fig. 4. Ellipsoid. 
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In Table 1, we compare the common normal 

directions calculated by four weighted average 

formulas with the analytic normal direction on the 

common node. The analytic normal direction and 

calculated common normal directions are 

expressed as the vector format. The spherical 

coordinate system (  and  ) is employed for 

describing the conformal surface conveniently. 

The unit of spherical coordinates   and   is the 

degree. In consideration of the generality of four 

adjacent surface elements, division of surface is 

controlled by the angular intervals of spherical 

coordinates   and   in every case (in Table 1) 

like the longitude and latitude of the earth. 

 

Table 1: Calculation results of common normal directions 

Model Mesh Sizes 

( 
0 
) 

Analytic Normal 

Vector 

Formula (i) Formula (ii) Formula (iii) Formula (iv) 

Sphere

 : 20, 30, 40 

 : 1, 10, 20

0.150384 

0.086824 

0.984808 

0.150388 

0.086837 

0.984806 

0.15044 

0.086878 

0.984794 

0.150388 

0.086837 

0.984806 

0.150334 

0.086795 

0.984818 

 : 0, 10, 20 

 : 20, 30, 40

0.492404 

0.086824 

0.866025 

0.49239 

0.086814 

0.866034 

0.49241 

0.086817 

0.866022 

0.49239 

0.086814 

0.866034 

0.492369 

0.086811 

0.866046 

 : 0, 10, 40 

 : 20, 50, 60

0.754406 

0.133022 

0.642788 

0.751913 

0.13369 

0.645565 

0.751475 

0.133856 

0.64604 

0.751988 

0.133681 

0.645479 

0.752624 

0.133381 

0.6448 

 : 20, 50, 60 

 : 1, 10, 40

0.111619 

0.133022 

0.984808 

0.112833 

0.133589 

0.984593 

0.11316 

0.133792 

0.984527 

0.112797 

0.133582 

0.984598 

0.111965 

0.132882 

0.984787 

 : 30, 70, 90 

 : 5, 30, 60

0.17101 

0.469846 

0.866025 

0.173981 

0.468775 

0.866014 

0.175156 

0.469796 

0.865224 

0.173793 

0.46882 

0.866028 

0.172363 

0.467737 

0.866898 

 : 5, 30, 60 

 : 30, 70, 90

0.813798 

0.469846 

0.34202 

0.811349 

0.469217 

0.348638 

0.81086 

0.469319 

0.349637 

0.811438 

0.469277 

0.348351 

0.811996 

0.469193 

0.347161 

Ellipsoid

 : 20, 30, 40 

 : 1, 10, 20

0.288022  

0.16629  

0.943075 

0.292844 

0.169097 

0.941089 

0.294023 

0.169771 

0.9406 

0.292393 

0.168845 

0.941274 

0.291268 

0.168202 

0.941738 

 : 0, 10, 20 

 : 20, 30, 40

0.744445  

0.131266  

0.654654 

0.748462 

0.131963 

0.649916 

0.748397 

0.131952 

0.649993 

0.748539 

0.131985 

0.649822 

0.748601 

0.131996 

0.649749 

 : 0, 10, 40 

 : 20, 50, 60

0.908121  

0.160126  

0.38688 

0.917875 

0.163196 

0.361763 

0.918985 

0.163692 

0.358708 

0.919571 

0.163598 

0.357246 

0.918558 

0.162952 

0.360135 

 : 20, 50, 60 

 : 1, 10, 40

0.213778  

0.25477  

0.943075 

0.238914 

0.282892 

0.92892 

0.244353 

0.288933 

0.92564 

0.233345 

0.276594 

0.932226 

0.21844 

0.259424 

0.940735 

 : 30, 70, 90 

 : 5, 30, 60

0.258543  

0.710341  

0.654654 

0.272015 

0.73291 

0.62358 

0.273087 

0.732454 

0.623646 

0.270861 

0.733465 

0.623428 

0.269443 

0.73418 

0.623202 

 : 5, 30, 60 

 : 30, 70, 90

0.852031  

0.49192  

0.179044 

0.854928 

0.494413 

0.157015 

0.854999 

0.494862 

0.155202 

0.855228 

0.495324 

0.152444 

0.855205 

0.494868 

0.154045 
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The calculation errors of four weighted 

average formulas are shown in Table 2. The 

calculation errors are defined as the angles 

between the analytic normal direction and 

calculated common normal directions, as 

following equation (13). The unit of error is the 

degree. 

 












 


ia

ia
error

0

0arccos180
ZZ

ZZ
. (13) 

Where aZ  is the analytic normal direction. i0Z  is 

the common normal directions calculated by the 

ith formulas. arccos()  is arc cosine function. 

Although, the element size is very fine (1/10 

wavelength) in the FEM of electromagnetic 

problems actually, the large size elements are 

proposed to show obviously the calculation errors 

between the analytic and numerical solution. In 

Table 2, the results show that the calculation errors 

of four weighted average formulas are very small, 

and the calculation errors of formula (iv) are 

almost less than those of other formulas, especially 

on the large curvature domain. This means that the 

weighted average approach to the analytic normal 

direction will be very accurate in the FEM of 

actual electromagnetic problems. 

 

Table 2: Calculation errors of common normal directions 

Model Mesh Sizes 

( 
0 
) 

Formula (i) 

Error ( 
0 
) 

Formula (ii) 

Error ( 
0 
) 

Formula (iii) 

Error ( 
0 
) 

Formula (iv) 

Error ( 
0 
) 

Sphere

 : 20, 30, 40 

 : 1, 10, 20 0.0008
 

0.00456 0.00078 0.00334 

 : 0, 10, 20 

 : 20, 30, 40 0.0011 0.00054 0.0011 0.00247 

 : 0, 10, 40 

 : 20, 50, 60 0.2172 0.2553 0.2107 0.1553 

 : 20, 50, 60 

 : 1, 10, 40 0.0778 0.1000 0.0757 0.0214 

 : 30, 70, 90 

 : 5, 30, 60 0.1809 0.2420 0.1699 0.1520 

 : 5, 30, 60 

 : 30, 70, 90 0.4059 0.4687 0.3885 0.3144 

Ellipsoid

 : 20, 30, 40 

 : 1, 10, 20 0.3393 0.4220 0.3079 0.2291 

 : 0, 10, 20 

 : 20, 30, 40 0.3582 0.3523 0.3652 0.3707 

 : 0, 10, 40 

 : 20, 50, 60 1.5538 1.7421 1.8312 1.6529 

 : 20, 50, 60 

 : 1, 10, 40 2.3084 2.8107 1.7908 0.4005 

 : 30, 70, 90 

 : 5, 30, 60 2.3321 2.3360 2.3356 2.3460 

 : 5, 30, 60 

 : 30, 70, 90 1.2811 1.3869 1.5474 1.4537 

 

VI. CONCLUSION 
For calculating accurately the common normal 

direction of conformal PML elements, we develop 

the NURBS arithmetic of conformal surface and 

four weighted average formulas of common 

normal direction. In view of its precision in the 

experiments, the NURBS arithmetic shows high 

availability as an ideal approach for the common 
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normal direction of conformal PML. 
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