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Abstract ─ The best uniform approximation 

method hybridized with Singular Value 

Decomposition (SVD) is proposed to reduce the 

time requirement for computation of monostatic 

Radar Cross Section (RCS). In contrast to our 

previous work, the traditional best uniform 

approximation technique is applied to compute the 

key excitation vectors instead of electric current 

vectors. Reduction of the number of multiple 

excitation vectors can lead to significantly reduced 

computation time. Furthermore, with low-rank 

property, the key excitation vectors could be 

further compressed by SVD, resulting in a more 

efficient method. Numerical results demonstrate 

that the proposed method is efficient for 

monostatic RCS calculation with high accuracy. 

 

Index Terms ─ Best uniform approximation, 

monostatic scattering, radar cross-section, Singular 

Value Decomposition (SVD). 
 

I. INTRODUCTION 
Analysis of electromagnetic wave scattering 

from electrically large objects using conventional 

Method of Moment (MoM) [1,2] requires a mass 

of computation time and storage, because the 

Electrical Field Integral Equation (EFIE) matrix 

associated with the resulting linear systems is 

large, dense, and ill-conditioned. To solve integral 

equations by applying traditional MoM, the 

computation complexity for the iterative solver is 

O(kN2) and the memory requirement is O(N2), 

where N refers to the number of unknowns and k 

refers to the number of iterative steps. Obviously, 

it is impractical to use a personal computer to 

solve equations with more than 10,000 unknowns. 

This difficulty can be overcome by using the 

multi-level fast multi-pole algorithm (MLFMA) 

[2,3] while accelerating the operation of matrix-

vector product. The computation complexity can 

be reduced to O(NlogN) and the memory 

requirement to O(NlogN). Moreover, 

preconditioning techniques [4-8] can speed up 

convergence of iterative solvers by improving 

spectral properties of the EFIE matrix. However, it 

is still time- and memory-consuming for 

calculation of monostatic RCS since it requires 

repeated solution of EFIE at each incident 

direction and frequency. 

The Model-Based Parameter Estimation 

(MBPE) technique is presented by Miller and 

Burke to accurately compute the wide band 

response with a few direct calculations [9,10]. In 

this technique, the electric current or field is 

expanded as a rational function. The coefficients 

of the rational function are obtained using either 

frequency/angular data or the related derivative 

data [22]. In [11,12], an adaptive sampling method 

to obtain the optimal samples for monostatic RCS 

calculation with wide angular band. The adaptive 

technique is employed to generate new sampling 

points automatically by using a coarse-to-fine 

hierarchy. 

As an alternative technique, the best uniform 

approximation [13] has been introduced. The best 

uniform approximation are important in 

approximation theory since the roots of the 

Chebyshev polynomials of the first kind, which 

are also called Chebyshev nodes, are used as 

nodes in polynomial interpolation. The resulting 
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interpolation polynomial minimizes the problem 

of Runge’s phenomenon and provides an 

approximation that is close to the polynomial of 

best approximation to a continuous function under 

the maximum norm. In [13], the best uniform 

approximation is proposed to optimally select the 

most informative angles in monostatic RCS curve, 

resulting in an efficient computation of monostatic 

scattering. 

In [14], it is reported that multiple excitation 

vectors or right hand side vectors can be 

compressed by use of the low-rank property. 

Accordingly, the optimal excitation vectors 

corresponding to the selected angles can be 

compressed by Singular Value Decomposition 

(SVD). In this paper, the combination of SVD and 

best uniform approximation is applied to efficient 

computation of monostatic RCS. The numerical 

simulations demonstrate that this framework can 

reduce the computation time significantly. 

The remainder of this paper is organized as 

follows. Section II demonstrates the basic theory 

and formulations of integral equations. The theory 

of the best uniform approximation and using SVD 

to achieve compression will be discussed in 

section III. Numerical experiments of several 

geometries are presented to demonstrate the 

efficiency of this proposed method in Section IV. 

 

II. EFFICIENT COMPUTATION OF 

MONOSTATIC RCS BY BEST 

UNIFORM APPROXIMATION 

A. Theory of moment method 

For electromagnetic scattering from a Perfect 

Electrical Conductor (PEC), the Combined Field 

Integral Equation (CFIE) which consists of EFIE 

and MFIE is widely used for closed structures [1]. 

The CFIE formulation of electromagnetic wave 

scattering problems using planar Rao-Wilton-

Glisson (RWG) basis functions for surface 

modeling is presented in [15,16]. Once the 

resulting linear systems from the CFIE 

formulation after Galerkin’s test are solved by 

numerical matrix equation solvers, the CFIE 

matrix equation can be symbolically rewritten as: 

 Ax=b. (1) 

Here, A refers to the impedance matrix. x is the 

column vector containing the unknown 

coefficients of the surface current expansion with 

RWG basis functions and it can be used to 

calculate the scattered field and RCS. b devotes 

the right hand side which generated by the incident 

wave. 

To solve the above matrix equation by an 

iterative method, the matrix-vector products are 

required at each iteration step. Physically, a 

matrix-vector product corresponds to one cycle of 

iterations between the basis functions. The basic 

idea of the Fast Multi-pole Method (FMM) is to 

convert the interaction of element-to-element to 

the interaction of group-to-group. Here a group 

includes the elements residing in a spatial box. 

The mathematical foundation of the FMM is the 

addition theorem for the scalar Green’s function in 

free space. Using the FMM, the matrix-vector 

product Ax can be written as: 

 Ax=ANx+AFx. (2) 

Here AN is the near part of A and AF is the far part 

of A. In the FMM, the calculation of matrix 

elements in AN remains the same as in the MoM 

procedure. However, those elements in AF are not 

explicitly computed and stored. Hence, they are 

not numerically available in the FMM. It has been 

shown that the operation complexity of FMM to 

perform Ax is O(N1.5). If the FMM is implemented 

in multilevel, the total cost can be reduced further 

to O(NlogN) [2,3]. However, it is still time 

consuming for the computation of a monostatic 

RCS since it requires repeated solution of CFIE 

for each incident direction. As a result, new 

methods are required to circumvent this difficulty. 

 

B. Accelerated by best uniform approximation 

In order to compute the monostatic RCS of 

arbitrary geometry, MoM solver and MLFMA 

have to be applied angle by angle over a given 

angular band. To accelerate it by the best uniform 

approximation, the specific algorithm is as 

follows: 

For a given angular band [θm, θn], let: 

 2 ( )m n

n m

k
  

 

 



. (3) 

Accordingly, the surface current vector can be 

written as: 

 ( ) ( )
( )

2

n m m nk
k

      
  

 
I I , (4) 

where k belongs to [-1, 1]. 

Assume that Tl(k) (l=1,2,...,n) as the l-order 

Chebyshev polynomials and it is defined as: 

 T0(k)=1, (5a) 
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 T1(k)=k, (5b) 

 Tl+1(k)=2kTl(k)-Tl-1(k), 2≤l≤n. (5c) 

So the Chebyshev Approximation of I(k) can be 

expressed as: 
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Here, θi is called the Chebyshev samples in [θm, 

θn]. Where: 

 ( ) ( )

2

i n m m n
i

k    


  
 , i=1,2,...,n. (9) 

Above all, we summarize the algorithm of the best 

uniform approximation about the target surface 

current, which is presented as follows. 
 

The best uniform approximation algorithm 

Step 1: Calculate the zero points ki of Tn(k). 

Step 2: Transform the zero points to Chebyshev 

samples. That is transform ki to θi using 

formulation (9). 

Step 3: Using MoM and MLFMA to compute 

current vector I(θi). Then apply the 

formula of (8) to get the coefficients cl. 

Step 4: Using the formula of (6) to calculate the 

approximate current throughout the whole 

angular band [θm, θn]. 

Step 5: Using the approximated current vector to 

compute the monostatic RCS. 

 

III. BEST UNIFORM APPROXIMATION 

WITH SVD COMPRESSION 
Theoretically, the combination of MoM and 

MLFMA is able to accurately analyze the 

scattering of any geometry. Improved by the best 

uniform approximation, the computation of a 

monostatic RCS can be accelerated greatly. 

However, in some cases, the number of 

coefficients of the interpolation polynomials is so 

large as to compromise the efficient calculation of 

monostatic scattering. This process can be 

computationally prohibitive for electrically large 

objects. In order to alleviate this difficulty, a 

singular value decomposition based method is 

proposed and discussed in this section. 

Firstly, a brief review of compression of right 

hand sides is given. The computation of 

monostatic RCS can be considered as linear 

equations with multiple right hand sides: 

 AX=B, (10) 

where A is the impedance matrix, X is the multiple 

complex coefficient vector of RWG basis and B is 

the multiple right hand side generated by the 

incident wave. In addition, 

 X=[x(θ1), x(θ2), …, x(θn)], (11) 

 B=[b(θ1), b(θ2), …, b(θn)], (12) 

where θi is the ith incident angle. Using traditional 

singular value decomposition, the matrix B can be 

described in the form of an eigenvalue and 

eigenvector: 

 B=UΣVH. (13) 

The superscript ‘H’ denotes the conjugate 

transpose. If the dimension of B is N×M, the 

dimension of matrices U、Σ and V are N×M, 

M×M, M×M, respectively. N is the number of 

unknowns. Σ is a diagonal matrix including all the 

eigenvalues of B while U and V contain all the 

eigenvectors of B. When B is the multiple right 

hand sides in the linear system connecting with the 

SIE used for monostatic RCS, the matrix B is low-

rank and can be approximately described as a low-

rank SVD form: 

 B=UkΣkVk
H, (14) 

where the dimension of matrices Uk、Σk and Vk 

are N×k, k×k, M×k, respectively. Only the k largest 

eigenvalues and corresponding eigenvectors are 

reserved. Substituting (14) into (10), the linear 

equations can be rewritten as: 

 X≈(A-1Uk)ΣkVk
H. (15) 

Here, A-1Uk can be computed by any iterative 

solver. If using a direct solver to compute the 

inversion of matrix A [17], the proposed method 

will become useless. Therefore, the number of 

repeated solutions of Ax=b is k for SVD method. 

Using traditional method, the number is M. 

Generally, k is much smaller than M which leads 

to an efficient method for computation of 

monostatic RCS over a wide angular band. 

Using the best uniform approximation, we can 

write the induced current into the sum of the 

samples shown in (14). We rewrite this 

formulation in matrix form: 

 X=A-1BsC, (16) 

where X is a matrix containing all induced 

currents over the whole angular band. C is the 
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coefficient matrix of the non-uniform interpolation 

method with the dimension of s×M. Bs contains all 

the key samples of the excitation vectors. 

According to formulation (16), the required 

number of repeated solution of Ax=b is s, where s 

is the number of required terms of Chebyshev 

Polynomials. Using singular value decomposition 

for matrix Bs: 

 Bs=UskΣskVsk
H. (17) 

Then, 

 X=(A-1Usk)ΣskVsk
H·C. (18) 

As a result, the required number of repeated 

solution is reduced to sk. 

Above all, we can summarize the algorithm of 

the compressed best uniform approximation, 

which is presented as follows. 

 

The compressed best uniform approximation 

algorithm 

Step 1: Calculate the zero points ki of Tn(k). 

Step 2: Transform the zero points to Chebyshev 

samples. That is transform ki to θi using 

formulation (9). 

Step 3: Computing the right hand sides V(θi) 

using MoM formulation. Apply the 

formula of (8) to get the coefficients cl. 

Then put all the Chebyshev basis into 

matrix Bs. 

Step 4: Transfer Bs=[Bs1, Bs2, ..., Bsn] into the 

form of UkΣkVk
H by singular value 

decomposition, where k is the rank of Bs. 

Step 5: Computing the value A-1Usk. Then using 

formulation (18) to get the value of 

current vector I. 

Step 6: Using the formula of (6) to calculate the 

approximate current throughout the whole 

angular band [θm, θn]. 

Step 7: Using the approximated current vector to 

compute the monostatic RCS. 

 

Considering the accuracy of the proposed 

method, the error control is very important in SVD. 

The Convergence Error (CE) is defined here to 

control the error of SVD. That is, some rows of 

matrix U and some columns of V should be 

truncated in SVD when the corresponding 

eigenvalue over the largest eigenvalue is smaller 

than CE. In order to reduce the numerical error, 

CE is required to be sufficiently small. However, 

large CE is needed for efficiency. The value of CE 

is chosen as CE=10-2 in this paper, and this will be 

discussed in the next session. 

 

IV. NUMERICAL RESULTS 
In this section, a number of numerical results 

are presented to demonstrate the accuracy and 

efficiency of the proposed method for fast 

calculation of monostatic RCS over a wide angular 

band. The Flexible General Minimal Residual 

(FGMRES) [18,19,20] algorithm is applied to 

solve linear systems. The dimension size of the 

Krylov subspace is set to be 30 for outer iteration 

and the dimension is set to be 10 for inner 

iteration. The tolerance of the inner iteration is 0.1 

in this paper. All experiments are conducted on a 

Quad-Core AMD Opteron (tm) with 4.00 GB local 

memory and run at 2.31 GHz in single precision. 

The iteration process is terminated when the 2-

norm residual error is reduced by 10-3, and the 

limit of the maximum number of iterations is set 

as 1000. 

Four geometries are applied to illustrate the 

performance of our proposed method. They 

consist of a NASA Almond with 1815 unknowns 

[23], a Reentry Vehicle (RV) with 26566 

unknowns [21], a Cube with 49260 unknowns and 

the VFY-218 model [3] with 40725 unknowns. 

The NASA Almond is used for testing the value of 

CE, while the last three geometries is used for 

testing the accuracy and efficiency of the proposed 

method. 

As shown in Fig. 1, the NASA Almond is one 

of the most popular geometry in electromagnetics 

and its structure is define in [23]. The RV has a 

blunt nose as well as a deeply recessed rear cavity 

that are expected to be significant sources of 

backscatter. The three-dimensional shape of the 

RV is illustrated in Fig. 2 (unit: wavelength). As 

the third geometry, the length of the Cube is 1 m. 

The VFY-218 is a well-known model in the field 

of electromagnetic scattering and its geometry is 

shown in Fig. 3. The VFY-218 is 15.5 m from 

nose to tail, 8.9 m from one wing to another, and 

4.1 m from top to bottom. 

In our numerical experiments, the geometries 

are illuminated by a plane wave with the incident 

pitch angles range from 0 to 180 deg. The 

frequency is 1.0 GHz for the RV, 300 MHz for 

Cube and 300 MHz for VFY-218. For all cases the 

azimuth angle is 0 deg. Firstly, the factor ‘CE’ 

must be determined. In Fig. 3, the NASA almond 

is used for testing the value of CE since it has a 
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small number of unknowns. The results of the 

monostatic RCS of by four different CE are 

compared with the reference result (the direct 

method). The frequency is 3.0 GHz for the almond 

geometry. The reference result is the RCS curve 

computed with repeated solution without 

compression at each angle. Other curves are 

computed by our proposed method. We select a 

part of the curve where the difference is much 

bigger with the incident pitch angles range from 

20 to 100 deg. From this figure, when CE is set to 

be 0.1 or 0.05, although the decrease of 

computation time meets the requirement, the RCS 

curve is not accurate enough. When CE is set to be 

0.01 and 0.001, the proposed method will be able 

to perform a good result. The time of the 

comparison is listed in Table 1. As is shown, the 

CPU time is 338s when CE is set to be 0.001, and 

232s when CE is set to be 0.01. Therefore, 

CE=0.001 leads to larger computation time than 

0.01. If using the proposed method without 

compression, which means CE is set to be 0, it 

would spend 5 times longer than CE is set to be 

0.01 for the high-rank. That is, there is a tradeoff 

between accuracy and efficiency. In this paper, the 

value of CE is set to be 0.01 to keep the RCS 

curve accurate enough. 

 

                     
(a) (b) 

 

         
 (c) (d) 

 

Fig. 1. Four geometries used in this paper: (a) 

NASA Almond, (b) Reentry Vehicle, (c) Cube, 

and (d) VFY-218. 
 

 
 

Fig. 2. Reentry vehicle model (unit: wavelength). 
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Fig. 3. Comparison of the results by proposed 

method with different CE. 

 

Table 1: Computation time of monostatic RCS 

with different CE (time: second) 

CE 0 0.001 0.01 0.05 0.1 

Time 1386 338 232 152 78 

 

As is shown in Figs. 4-6, the monostatic RCS 

curve of RV, Cube, and VFY-218 which 

computed by the proposed method is compared 

with the curve computed by the reference result 

repeatedly. “Reference” refers to the results 

computed by the MLFMA without interpolation, 

while “proposed method” denotes results 

computed by proposed method in section III. The 

CE is set to be 0.01 and the SVD is used to 

compress the multiple vectors generated by the 

best uniform approximation. It is obvious that the 

results matched very well. Consequently, the 

proposed method is accurate since there is no 

significant difference between the RCS result 

obtained by the reference result and the proposed 
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method. As is shown in Table 2, when compared 

with the reference results, the proposed method 

provides great advantage on total computation 

time since the number of right hand side is small. 

For reference results, the total computation time is 

351497s, 53497s and 594576s, respectively, and 

the number of linear equation solutions is 721 

since the space for angle sweep is 0.25 degree. It is 

time consuming for repeated solution of linear 

systems. In order to demonstrate the efficiency, it 

is applied for comparison. When SVD 

compression is used, the multiple vectors for these 

three geometries can be compressed. 

Consequently, the CPU time is reduced to 12004s, 

1672s and 95838s. By using the proposed method, 

it saved time much than 29 times for RV, 31 times 

for Cube and 6 times for VFY-218, which is 

mentioned before while contrasting with the direct 

method. For different geometries, the saving time 

is different due to their complexity of the 

structures and the frequency. 
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Fig. 4. The monostatic RCS results for RV. 
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Fig. 5. The monostatic RCS results for Cube. 
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Fig. 6. The monostatic RCS results for VFY-218. 
 

From Table 2, it is concluded that when 

compared with traditional method, the solution 

times for the linear system are reduced greatly and 

total computation time can be reduced 

significantly with this proposed method. As a 

result, our proposed method can be considered as 

an accurate and efficient method. 
 

Table 2: Computation time of monostatic RCS with different methods 

Geometry Unknown f θ (deg) φ (deg) 
Computation Time (s) 

Repeated Solution Proposed Method 

RV 26566 1.0 GHz 0~180 0 351497 12005 

Cube 49260 300 MHz 0~180 0 53498 1672 

VFY-218 40725 300 MHz 0~180 0 594577 95838 
 

V. CONCLUSIONS 
In this paper, combining singular value 

decomposition with the best uniform 

approximation has been proposed for efficient 

analysis of monostatic scattering. Unlike 

interpolation of the electric current, the best 

uniform approximation algorithm is used to 

approximate the multiple right hand sides on a set 

of non-uniform sampling angles and SVD is 

employed to reduce the consumption time 

automatically. The most informative angles may 

be selected by this procedure. Moreover, applying 

SVD to compute the eigenvectors of the selected 

vectors leads to reduced times for the iterative 

solutions of linear systems. Numerical 

experiments demonstrate that the proposed method 

is more efficient when compared with the 

traditional direct method. 
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