
Waveguide Microwave Imaging: Solids Volume Fraction of Particulate 
Materials 

 
 

Alexander V. Brovko 1, Ethan K. Murphy 2,3, and Vadim V. Yakovlev 2 
 

1 Department of Applied Information Technologies 
Yury Gagarin State Technical University of Saratov (SSTU), Saratov 410054, Russia 

brovkoav@gmail.com 
 

2 Department of Mathematical Sciences 
Worcester Polytechnic Institute, Worcester, MA 01609, USA 

vadim@wpi.edu 
 

3 Thayer School of Engineering 
Dartmouth College, Hanover, NH 03755, USA 

ethan.k.murphy@dartmouth.edu 
 
 

Abstract ─ An original modeling-based microwave imaging 
technique for determining the volume fraction of solid 
material in dielectric powders is described. The desired 
characteristic is determined by analyzing S-parameter 
measurements in a waveguide containing the sample 
with the help of an artificial neural network trained by 
data from 3D FDTD simulation. The powder sample is 
represented by a mixture of air and millimeter-scale 
particles reproduced in the FDTD model. Computational 
tests with 20 to 40 mm cubic samples of SiC and ZrO2 
powders in WR340 show that the solids volume fraction 
is determined with less than 5% error. 
 
Index Terms ─ Artificial neural network, FDTD modeling, 
microwave imaging, particulate materials, solids volume 
fraction. 
 

I. INTRODUCTION 
High-temperature microwave processing methods, 

including sintering, are known to be promising technologies 
that, when carried out in properly designed systems, 
could facilitate energy savings and high quality 
processing of powders and particulate materials [1-4]. 
There is a growing effort to develop corresponding 
multiphysics models and computational tools capable of 
assisting engineers in designing systems for efficient 
high-temperature microwave processing (see, e.g., [5-9]). 
Characterization of material properties is an integral part 
of the modeling process, but reliable experimental data 
on electromagnetic and thermal parameters of the processed 
material are not always available. 

Thermal conductivity is a critically important input 
parameter in the computation of microwave-induced 
temperature fields. For many powders, it can be relatively 

accurately estimated using advanced physical models for 
thermal conductivity of porous materials [10,11]. However, 
this approach requires the solids volume fraction 
 (or 
porosity < = 1 – 
) of the powder to be known. For many 
materials the data provided by the manufacturers or in 
handbooks is available in only a certain range, so the 
resulting value of thermal conductivity becomes necessarily 
uncertain [12]. This, in turn, may impact the results of 
computer simulation. 

Effective complex permittivity �eff is another critical 
input parameter of the related multiphysics models. All 
(classical and contemporary) mixing formulas which can 
be used for determining �eff of the powder material 
(interpreted as a mixture of air and a solid component) 
require 
 to be a known parameter [13]. 

Data on 
 is also important to the accurate design 
and valid modeling of behavior of particulate materials 
in fluidized beds, solid fuel combustion, and other 
industrial processes. While a variety of measurement 
techniques (including non-invasive microwave and 
optical sensing methods) have been reported [14-18], 
experimental determination of the concentration of solid 
in these applications may be technically difficult, 
expensive and not always practically possible. 

In this paper, we describe an original modeling-
based microwave imaging technique for determining the 
solids volume fraction of dielectric particulate materials. 
The proposed approach further develops the authors’ 
earlier artificial neural network (ANN) inversion 
technique for finding the position and size of an object 
inside a dielectric sample in a waveguide system [19,20]. 
The ANN is trained with multiple S-parameter data from 
full-wave numerical simulations; the network determines 

 when it is given the data on a corresponding single 
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measurement. In the model, a sample of micro- or nano-
powder is represented by a collection of inclusions 
(comparable in their dimensions with the size of the unit 
of spatial discretization) enclosed in the sample’s volume. 
Legitimacy of such a representation is supported by 
computational tests showing an insensitivity of frequency 
characteristics of the S-parameters to the particle size in 
different scenarios with the same 
. We find that both 
solid-in-air and air-in-solid material models are operational 
with the inclusions of both rectangular and cylindrical 
shapes, but the model with air parallelepipeds in solid 
appears to be computationally most efficient. Functionality 
of the proposed technique is demonstrated with silicon 
carbide (SiC) and zirconium dioxide (ZrO2) (zirconia) 
powders in a rectangular waveguide; the solids volume 
fraction of the powders with 
 = 60-80% is reconstructed 
with less than 5% error. 
 

II. TECHNIQUE AND MATERIALS 
Our approach to determining the solids volume 

fraction of powders and particulate materials is based on 
simple measurement of S-parameters of a waveguide 
containing a tested sample and an ANN inversion 
procedure, backed by data on the reflection coefficient 
S11 and the transmission coefficient S21 in a finite-
difference time-domain (FDTD) simulation of this 
system. We consider complex reflection and transmission 
coefficients in a two-port waveguide structure shown in 
Fig. 1; for the sake of computational convenience, the 
tested powder material is considered in this paper to be 
of rectangular shape of A, B, and C mm in the directions 
of the x-, y-, and z-axes, respectively. In principle, the 
technique remains the same for the samples of any shape, 
and the measurement system remains the same for the 
samples of different shapes and sizes. 
 

 
 
Fig. 1. Microwave system with the tested sample; output 
port is supposed to be a perfect load. 
 

We introduce the characteristic of the solids volume 
fraction 
 assuming that the sample consists of two 
media, air and solid, and they are arranged as in one of 
the lattices in Fig. 2: multiple solid inclusions (of 
rectangular or cylindrical shape) in air, or multiple air 
inclusions (of rectangular or cylindrical shape) in solid. 
While typical powders to be sintered consist of micro- or  

nanometer particles, the sizes of the inclusions in our 
technique are comparable with cells in an applicable 
practical FDTD mesh; thus, for the microwave frequency 
range, they are of millimeter-scale size. Two examples 
of a volumetric structure of the tested sample (taken for 
convare) shown in Fig. 3. 
 

 
 (a) (b) 

 
 (c) (d) 
 
Fig. 2. Solid-in-air (a), (b) and air-in-solid (c), (d) models 
of a particular material – cubic/rectangular (a), (c) and 
cylindrical (b), (d) inclusions. 

The adequacy of such a representation is suggested 
by the key principle of microwave imaging: the observed 
electric field responses to the effective complex 
permittivity of a dielectric mixture that depends on the 
volume fraction of the inclusions rather than on their 
individual dimensions. Furthermore, following the classical 
mixing approach [13], in this paper, we work with the 
samples in which the inclusions are assumed to be of 
sizes randomly distributed within certain ranges and 
randomly positioned within their immediate neighborhoods. 
The solids volume fraction 
 is calculated as the ratio: 
= 
 = Vi/Vs, 
where Vs is the volume of the sample (in our case,  
Vs = ABC) and Vi is the total volume occupied by the 
inclusions and calculated as: 
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where aj, bj, cj, dj, and hj are the dimensions of N 
rectangular or cylindrical inclusions, as shown in Fig. 3. 
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 (a) 

 
 (b) 
 
Fig. 3. 3D views of the tested samples with rectangular 
boxes (a) and cylinders (b) homogeneously embedded as 
inclusions in an isotropic environment of cubic shape. 
 

We use an ANN with global cubic radial basis 
functions (RBF) for single hidden layer neurons [21,22] 
as an inversion mechanism for determining 
 of the 
powder in the sample. The network architecture is shown 
in Fig. 4. The ANN inputs, X, are the real and imaginary 
parts of the S-parameters at P points in the considered 
frequency range (4P input nodes); the output of the ANN 
is the predicted value of solids volume fraction 
�. The 
hidden layer of neurons consist of NC nodes, which have 
form: 
 gi(X) = ||X – Ci||3, 
where Ci are the centers of the RBFs and i = 1, …, NC. 
The S-parameters of the waveguide system partially 
filled with the sample (Fig. 1) are computed with the 
FDTD model and used for ANN training. For each 
simulation, a distribution of inclusions in the sample is 
generated assuming the particles to be of sizes randomly 
distributed from l1 to l2 mm. It is also assumed that a << A, 
b << B, c << C, and that a, b, c are much less than the 
wavelength in the waveguide. 

The output of the ANN is a linear combination of 
outputs from each RBF. The trained network finds the 

weights, i.e., coefficients of each RBF, such that the 
linear system is best fit in a least squares sense. That is, 
given NT training samples, we have NT input-output pairs 
(Xj, 

j), so, to train the network, we find a solution to the 
linear system: 
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with the weight vector w. We employ a zero training 
error regime for selection of centers, i.e., the training set 
is the set of centers chosen [23]. This means that NC = NT 
and G(X) is a NT × NT matrix. The trained network in Fig. 4 
can therefore be described by the formula: 
 G(X)w* = 
�, 
where w* is the best fitting weights and 
* is the ANN’s 
approximation to 
. The linear system is solved using 
singular value decomposition. 

After sufficient training, the ANN is able to reconstruct 
the solids volume fraction of the tested material from  
S-parameters obtained by a physical measurement. 
While in general this technique of numerical inversion is 
similar to our earlier ANN methodology [19,20], here it 
results not in reconstruction of parameters of each 
individual inclusion, but in the characteristic of their 
group with possible random deviations in their positions 
and sizes. 
 

 
 
Fig. 4. The ANN structure with one hidden layer. 
 

III. RESULTS 
The proposed technique was tested with three cubic 

samples (A = B = C = 40, 30, and 20 mm) of SiC and ZrO2 
powder in a section of WR340 waveguide of 250 mm 
length. For the considered range around the frequency of 
microwave sintering (2.45 GHz), we chose, in order to 
keep the required CPU time reasonable, the minimum 
cell size of the FDTD model to be 0.5 mm; therefore, the 
size distribution of the inclusions was chosen between  
l1 = 2 mm and l2 = 8 mm. The dielectric constant �′ and 
electric conductivity σ of the bulk materials were taken 
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to be �′ = 10.4 and σ = 0.1225 S/m for SiC [1] and �′ = 6.69 
and σ = 0.0258 S/m for ZrO2 [24]. 

The underlying computation of S-parameters was 
performed with the 3D conformal FDTD simulator 
QuickWave 2014 [25]. In the process of ANN training, 
we applied a coarse mesh with cell size 1 mm inside the 
sample and 5 mm outside the sample; the number of cells 
was 138,000, and steady state was reached after about 
10,000 iterations. One single simulation took about 1.5 
minutes on a PC with an AMD Athlon 6000+ 3 GHz 
processor. When computing S-parameters for different 
sizes of inclusions, we applied a finer mesh with cell size 
0.5 mm inside the sample and 5 mm outside the sample; 
in this case, the number of cells in the model was near 1 
million, and steady state was reached after about 25,000 
iterations. A single run on the aforementioned PC took 
about 30 minutes. 

All material models presented in Fig. 2 were tested, 
and while all four were found operational, the FDTD 
model with rectangular air-in-solid inclusions turned out 
to be most efficient (as required minimum computational 
resources) as well as stable and controllable: the lattice 
in Fig. 2 (c) can be kept in quite wide ranges of l and 
. 

A series of frequency-dependent characteristics of 
|S11| typical for the air-in-solid rectangular inclusions in 
the cubic sample are shown in Fig. 5. It can be seen that 
the curves corresponding to different particle sizes, but 
the same solids volume fraction, are very close to each 
other, whereas the curves corresponding to different 
 
are fairly distinct. (|S21| curves are not presented here, but 
their behavior is very similar.) The computations suggest 
that we can expand the results obtained for the samples 
with large (millimeter-scale) inclusions to samples of 
powders containing micro- and/or nanometer-scale 
particles without reproducing their actual sizes with the 
nano-scale cells of the FDTD model. 

The diagrams in Figs. 6-7 characterize the quality of 
learning of the ANN with P = 21 (i.e., with 20 equal 
intervals in the 2 to 3 GHz frequency range) for random-
size particle distributions and different shapes of the 
inclusions. For both powders and both air-in-solid and 
solid-in-air material models, the ANN is trained with 800 
distributions of particles of the material in air. It is seen 
that for cubic samples larger than 20 mm in size, 
reconstructed values of 
 appear to be very close to the 
testing values. 

Table 1 shows the reconstructed solids volume 
fractions of six samples in comparison with their actual 
values. For powders of lower density (
 < 0.75), the 
reconstruction error does not exceed 1.5%. When the 
sample appears to be closer to a solid (
 ~ 0.8), the 
reconstruction is less accurate, but the errors are still less 
than 5%. The accuracy is worse in the case of small 
samples with low-density powders. Since in these 
examples, the experimental data for S-parameters are 

simulated using a computer model, we expect that a 
practical implementation of this technique might suffer 
somewhat lower accuracy. However, the reconstructed 
solids volume fraction is still anticipated to be 
sufficiently accurate for subsequent use in physical 
models for thermal conductivity, especially in the 
absence of experimental data, and in other applications. 
 

 
 (a) 

 
 (b) 

 
 (c) 

 
 (d) 
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 (e) 

 
 (f) 
 
Fig. 5. Frequency characteristics of |S11| for different 
particle size l and solids volume fraction 
 in the lattice 
Fig. 2 (c) for cubic samples A = B = C = 20 mm (a, b), 
30 mm (c), (d), and 40 mm (e), (f) of SiC (a), (c) (e) and 
ZrO2 (b), (d), (f). 

 

  
 (a) (b) 

  
 (c) (d) 

  
 (e) (f) 
 
Fig. 6. ANN performance for the system with a solid-in-
air (Fig. 2 (a)) cubic sample A = B = C = 20 mm (a), (d), 
30 mm (b), (e), and 40 mm (c), (f) of SiC power (a)-(c) 
and ZrO2 powder (d)-(f) represented by rectangular 
inclusions for n = 100 testing points; ×: testing points;  
o: network responses. 
 

  
 (a) (b) 
 
Fig. 7. ANN performance for the system with an air-in-
solid (Fig. 2 (c)) cubic sample A = B = C = 30 mm of SiC 
power (a) and ZrO2 powder (b) represented by cylindrical 
inclusions for n = 100 testing points; ×: testing points;  
o: network responses. 

 
Table 1: Solids fractions of the powders reconstructed by the trained ANN 

Powder 

 Sample:          40×40×40 mm          30×30×30 mm          20×20×20 mm 
Actual 


 
Reconstructed 


 
Relative 

Error (%) 
Reconstructed 


 
Relative 

Error (%) 
Reconstructed 


 
Relative 

Error (%) 

SiC 

0.60 0.601 0.1 0.603 0.5 0.644 7.3 
0.65 0.643 1.1 0.644 0.9 0.649 0.2 
0.70 0.690 1.4 0.704 0.6 0.701 0.1 
0.75 0.746 0.5 0.747 0.4 0.748 0.3 
0.80 0.766 4.3 0.792 1.0 0.801 0.1 

ZrO2 

0.60 0.597 0.5 0.601 0.2 0.463 22.8 
0.65 0.643 1.1 0.641 1.4 0.649 0.2 
0.70 0.690 1.4 0.707 1.0 0.701 0.1 
0.75 0.751 0.1 0.748 0.3 0.749 0.1 
0.80 0.777 2.9 0.790 1.3 0.801 0.1 
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IV. CONCLUSION 
A new modeling-based technique for determining 

the solids volume fraction of particulate materials by the 
means of waveguide microwave imaging has been 
outlined. The required characteristic is extracted from  
S-parameters of a waveguide system containing the tested 
sample and is independent on the size of millimeter-scale 
inclusions representing micro- and nano-particles of the 
powder. It has been shown that, when backed by FDTD 
data in the 2 to 3 GHz frequency range, the ANN with 
global cubic RBF determines 
 with a sufficiently high 
resolution. Functionality of the technique has been 
illustrated in computational experiments with silicon 
carbide and zirconia powders. It was shown that with 
both materials excellent accuracy (less than 5% error) 
was achieved. It should be noted that this level of quality 
of reconstruction is reached with the use of minimal 
computational resources. 

In further developments, with an appropriate alteration 
of the ANN structure, the proposed technique can be 
transformed for determining the effective complex 
permittivity of particulate materials. 
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