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Abstract ─ In this paper, a model is presented to simulate 

wave propagation in curved rectangular tunnels with 

imperfectly conducting walls. The model is based on 

treating the tunnel as a waveguide, which is an extension 

of previous proposed model by Mahmoud [3]. A new 

approach to calculate the total attenuation rate of the 

propagated wave inside tunnel is proposed. The approach 

is considering the effect of imperfect conductivity of the 

upper and lower walls of the tunnel. This approach is 

based on assuming that the boundaries of the tunnel 

section are constant impedance surfaces as the surface 

impedance of the wall is almost independent of the angle 

of the wave incidence onto the wall. A simple scenario 

is considered to check the accuracy of this model. This 

scenario is verified by comparing experimental and 

numerical simulation results. Good agreement between 

the proposed model and the experimental results is 

obtained. 

 

Index Terms ─ Curved waveguide, imperfect conducting 

walls, wave propagation. 
 

I. INTRODUCTION 
Since the early seventies of the last century till  

now, there has been a continued interest in radio 

communication through tunnels [1-23], since signaling 

within working areas in mine tunnels or road tunnels  

was of prime importance [8–20]. A tunnel can act as a 

waveguide for radio waves of sufficiently high frequency, 

as the wavelength is much smaller than the tunnel linear 

dimensions, whence attenuation occurs due to the 

surrounding rocks [8–11]. It should be noted that at 

frequencies of hundred MHz, the earth rocks will act as 

a dielectric material with low loss tangent. In this case, 

the attenuation of the electromagnetic waves propagating 

in the tunnel occurs mainly due to leakage of waves into 

the rocks rather than Ohmic losses. In the presence of 

longitudinal conductors such as electricity cables, low 

frequency waves can also propagate in the form of a 

coaxial like mode [12–16]. Intentionally placed leaky 

cables have been placed inside tunnels in order to control 

the signal level inside the tunnel [15–19]. A typical 

straight tunnel with cross sectional linear dimensions of 

few meters can act as a waveguide to electromagnetic 

waves at UHF and upper VHF bands [17]. 

Modal propagation in curved tunnel has been 

considered by Mahmoud and Wait [23] and Mahmoud 

[3], showing a considerable increase in the attenuation 

due to curvature. In this paper, we review high frequency 

propagation in tunnels with curved rectangular cross 

section. We assess previously obtained closed forms  

of the attenuation rates of the low order modes by 

Mahmoud [3]. In the previous work [3], the side walls of 

the tunnels are considered as imperfect conducting walls, 

while the upper and lower walls are considered as PEC 

walls. So the attenuation rate is mainly due to the side 

walls effect. The main objective of present paper is to 

extend the analysis of the previous work [3] to include 

the effects of considering the upper and lower walls  

as imperfect conducting walls and to introduce the 

approximate total attenuation rate of the propagating 

signal inside tunnels due to four walls with imperfect 

conductivity. Also, to compare the effect of the upper 

and lower walls effects on the attenuation rate compared 

to the effects of the side walls. This approach is done by 

deducing the attenuation rate of the upper and lower flat 

walls from the analogy with rectangular waveguide 

analysis in [3]. Finally, experimental results are conducted  

ACES JOURNAL, Vol. 31, No.11, November 2016

Submitted On: July 25, 2016 
Accepted On: September 9, 2016 1054-4887 © ACES 

1265



in order to verify the presented theory. 

 

II. MODAL ANALYSIS OF CURVED 

TUNNEL 
Following [3], let us consider a rectangular tunnel, 

which is curved, in the horizontal plane as shown in Fig. 

1. Using a cylindrical coordinates frame with the 𝑧-axis 

along the vertical direction, the side surfaces of the 

tunnel coincide with 𝜌 = 𝑅 − 𝑎 and 𝜌 =  𝑅 +  𝑎, where 

R is the mean radius of curvature. The main assumptions 

in the analysis are [3]: (i) the frequency is high so that 

𝑘0𝑎 ≫ 1 and therefore the walls can be characterized by 

constant surface impedance and admittance 𝑍𝑠  and 𝑌𝑠 

where their normalized values are given by [3]: 

  𝑌𝑆 = (𝜀𝑟 − 𝑖𝜎 𝜔𝜀0⁄ ) √𝜀𝑟 − 1 − 𝑖𝜎 𝜔𝜀0⁄⁄ , (1) 

and 

    𝑍𝑆 = 1 √𝜀𝑟 − 1 − 𝑖𝜎 𝜔𝜀0⁄⁄ , (2) 

where 𝜀𝑟 is the corridor walls relative permittivity and 𝜎 

is the corridor walls conductivity, and (ii) slow curvature 

such that 𝑅/𝑎 ≫ 1. The waveguide modes are either TM 

or TE to z. Considering 𝐸𝑧  for the low order TMz modes 

and ignoring field variation along z as the electric field 

is vertical, the field is almost constant in z-direction 

(since 𝑘𝑧 ≪ 𝑘0), the electric field is given as [3]: 

    𝐸𝑧 = 𝑓𝑣(𝑘0𝜌)𝑒𝑥𝑝(−𝑗𝑣∅), (3) 

where 𝑓𝑣(𝑘0𝜌) is a linear combination of Bessel 

functions of first and second kind with complex order 𝑣. 

However, with low curvature 𝑅 ≫ 𝑎, and high frequency 

excitation, it is expected that 𝑣 and 𝑘0𝜌 are both large 

(≫ 1), while their difference is much less than 𝑣. Under 

these conditions, the modal equations for lower order 

𝑇𝐸𝑧  and 𝑇𝑀𝑧 are derived in terms of the Airy functions 

instead of the Bessel function of complex order 𝑣 and 

solved numerically for the propagation constant along 

the 𝜙-direction [3]: 

    𝑓𝑣(𝑘0𝜌) = 𝐶1𝐴𝑖(𝑡) + 𝐶2𝐵𝑖(𝑡), (4) 

with 

    𝑡 = (𝑘0𝜌 2⁄ )2/3(𝑣2 𝑘0
2⁄ 𝜌2 − 1), (5) 

where 𝐴𝑖(𝑡) and 𝐵𝑖(𝑡) are the Airy functions as defined 

in [3] and 𝐶1  and 𝐶2  are two arbitrary constants. The 

mathematical reasoning behind the validity of the Airy 

function representation is found in [3]. It can be noted 

that 𝑣 𝑘0𝜌⁄  is close to 1, the argument 𝑡 ≪ (𝑘0𝜌)  for 

𝑅 − 𝑎 ≤ 𝜌 ≤ 𝑅 + 𝑎.  
Applying the boundary conditions at the curved 

surfaces 𝜌 = 𝑅 − 𝑎 and 𝜌 = 𝑅 + 𝑎 require that 𝜂0𝐻𝜙 =

±𝑌𝑠  𝐸𝑧. Where, 

  𝐻∅ = (−𝑗 𝜔𝜇0⁄ ) 𝜕𝐸𝑧 𝜕𝜌⁄ , (6) 

 𝐻𝜌 = (−
𝜐

𝜔𝜇0𝜌
) ∗ 𝐸𝑧, (7) 

and that, 

    𝜕 𝜕𝑘0𝜌 ≅ −(𝜕 𝜕𝑡⁄ )⁄ (2 𝑘0𝜌⁄ )1/3. (8) 

The two boundary conditions lead to the two 

equations [3]: 

𝐶1𝐴𝑖
′(𝑡+) + 𝐶2𝐵𝑖

′(𝑡+) = 𝑌+
̅̅ ̅[𝐶1𝐴𝑖(𝑡+) + 𝐶2𝐵𝑖(𝑡+)], (9-a) 

𝐶1𝐴𝑖
′(𝑡−) + 𝐶2𝐵𝑖

′(𝑡−) = 𝑌−
̅̅ ̅[𝐶1𝐴𝑖(𝑡−) + 𝐶2𝐵𝑖(𝑡−)], (9.b) 

where the prime is the differentiation with respect to the 

argument, 𝑡± are given by (5) with 𝜌 = 𝑅 ± 𝑎 and, 

    �̅�± = 𝑗𝑌𝑠[𝑘0(𝑅 ± 𝑎)/2]1/3, (10) 

the modal equation for 𝑣  is obtained by equating the 

determinant of the coefficient 𝐶1and 𝐶2  in (9) to zero. 

Once 𝑣 is determined, the attenuation factor along the 

curved axis is given by [3]: 

 𝛼 = −Im [𝑣/𝑅], (11) 

and the phase constant is: 

 𝛽 = Re [𝑣/𝑅]. (12) 

For TE case is treated in similar fashion with 𝐻𝑧 the 

terms �̅�± are replaced by: 

    �̅�± = 𝑗𝑍𝑠[𝑘0(𝑅 ± 𝑎)/2]1/3, (13) 

where 𝑍𝑠 is defined by (2). 

It is noted from the proposed analysis that the 

previous model [3] considers the upper and lower tunnel 

walls as Perfect Electric Conductor (PEC) [3] and the 

attenuation rate in (11) is due to the side walls effects 

while this is not the case in real environment. 

 

 
 

Fig. 1. Curved rectangular tunnel [3]. 

 

III. EXTRA ATTENUATION RATE DUE TO 

IMPERFECT CONDUCTIVITY OF THE 

UPPER AND LOWER 
In reality, all the tunnel walls have imperfect 

conducting walls with low conductivity, thus for 

generality the attenuation rate inside the curved tunnel 

should be modified as to include the extra attenuation 

due to the imperfect conductivity of the upper and lower 

walls of tunnel. We can deduce the attenuation of the 

upper and lower flat walls of the curved tunnel with 

rectangular cross section from the analogy of rectangular 

tunnel analysis by approximating the upper and lower 

flat walls effect with the corresponding walls effect in 

the rectangular tunnel with same flat shape. We propose 

here, to use the attenuation of rectangular tunnel based 

on constant impedance walls proposed in [3]. A tunnel 

with rectangular cross section of dimensions a and b and 

the surrounding medium has a relative permittivity 𝜀𝑟 

and conductivity 𝜎 Siemens/m. When the applied radio 

frequency is sufficiently high such that the tunnel 

dimensions are much greater than the free space 

wavelength 𝜆0, then the low order modes in the tunnel 

would have 𝑘𝑥 ≪ 𝑘0 and 𝑘𝑦 ≪ 𝑘0, where 𝑘0 is the free 

space wavenumber, 𝑘𝑥  and 𝑘𝑦 are the wavenumbers in 
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the 𝑥 and 𝑦 directions. Under these conditions, the tunnel 

walls are accurately modeled by normalized constant 

surface impedance 𝑍𝑠  and admittance 𝑌𝑠 , which are 

obtained by (2) and (1), respectively. Following the 

analysis in [3], the approximate attenuation rate of  

the dominant mode with Vertical Polarization (VP) for 

rectangular tunnel is: 

𝛼rectangular 
𝑉𝑃 = 𝜋2𝑅𝑒(𝑌𝑠)/4𝑘0

2𝑏3 

 +𝜋2𝑅𝑒(𝑍𝑠)/4𝑘0
2𝑎3    𝑁𝑒𝑝𝑒𝑟/𝑚, (14) 

while for Horizontal Polarization (HP) is obtained by 

duality as: 

 𝛼rectangular 
𝐻𝑃 = 𝜋2𝑅𝑒(𝑍𝑠)/4𝑘0

2𝑏3 

 +𝜋2𝑅𝑒(𝑌𝑠)/4𝑘0
2𝑎3    𝑁𝑒𝑝𝑒𝑟/𝑚, (15) 

where the effect of the upper and lower walls with low 

conductivity is approximated as the first part of (14) and 

(15). We use the same approach to calculate the extra 

attenuation in curved tunnel due to imperfect conductivity 

of the upper and lower walls, where the walls effect is 

approximated with the same corresponding effect of the 

upper and lower rectangular tunnel walls. 

Thus, the extra attenuation is approximated for VP 

modes as: 

 𝛼𝑒𝑥𝑡𝑟𝑎_𝑎𝑡𝑡𝑒𝑛
𝑉𝑃 =  𝜋2𝑅𝑒(𝑌𝑠)/4𝑘0

2𝑏3     𝑁𝑒𝑝𝑒𝑟/𝑚, (16) 

where 𝑌𝑠 is obtaied by (1) while for HP modes is: 

 𝛼𝑒𝑥𝑡𝑟𝑎_𝑎𝑡𝑡𝑒𝑛
𝐻𝑃 =  𝜋2𝑅𝑒(𝑍𝑠)/4𝑘0

2𝑏3     𝑁𝑒𝑝𝑒𝑟/𝑚, (17) 

where 𝑍𝑠 is obtaied by (2). 

Thus, the total approximate attenuation rate of wave 

propagating inside rectangular curved tunnel is obtained 

by (11) for side walls and (16) for upper and lower walls 

for VP modes as: 

 𝛼𝑇𝑜𝑡𝑎𝑙
𝑉𝑃 =  𝜋2𝑅𝑒(𝑌𝑠)/4𝑘0

2𝑏3  + (−Im [
𝑣

𝑅
]), (18) 

and using same analysis, the HP total attenuation rate can 

be obtained. 

The percentage of the extra attenuation rate due to 

upper and lower walls obtained by (16) and (17) compared 

with the side walls attenuation rate obtained by (11) is 

shown in Fig. 2 for HP and VP, respectively. The tunnel 

width 𝑎 is 4.25 m while the tunnel height is 𝑏 = 𝑎/2. 
It can be noted that the VP has more attenuation than 

the HP, while in general it is found that the attenuation 

due to the side (curved) wall is much higher than the 

attenuation of the upper and lower flat walls. 

The proposed total attenuation rate is implemented 

in Matlab which runs on a laptop with 8 GB of RAM, 

Intel 2.6 GHz processor, and operating system is Windows 

10 64-bit. The tunnel width is 4.6 m while the height is 

2.6 m. The tunnel radius of curvature is 20 times the tunnel 

width and the simulation is done in frequency range  

0.2-0.8 GHz. The total program runtime for the above 

example is about 12 minutes. An algorithm is applied for 

finding the complex root of Eq. (9), which is considered 

the main bottleneck in the numerical calculations and  

the largest influence on the program speed. On the other 

hand, the same example is simulated using FEKO version 

7.0 with the same computer resources. It is found that the 

simulation takes about 60 minutes using FEKO Physical 

Optics (PO) solver. It should be noted that the proposed 

model is faster than the simulation package and the 

differences will be increased by increasing the dimensions 

of the corridor or operating frequency. Figure 3 shows a 

comparison between the calculated normalized total 

attenuation rate using the proposed model and simulation 

results. It can be noted that good agreement is obtained 

and the calculated error between the model and simulation 

results is about 13.25%. 

 

 
 

Fig. 2. Percentage of the extra attenuation due to the flat 

walls compared with the curved side walls attenuation.  

 

 

 
 

Fig. 3. Normalized attenuation in curved rectangular 

tunnel with VP modes, tunnel dimensions are 𝑎 = 4.6 m,
b = 2.3 m, and  R/a = 20. 
 

IV. MEASUREMENTS 
In this section sample results are presented to verify 

the accuracy of the proposed model for the signal 

attenuation rate in curved tunnel. The proposed 

measurements are used to study the simple wave 

propagating inside rectangular curved tunnel for cars. 

This simple scenario of a curved tunnel is verified  
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experimentally at frequency range 0.1-1 GHz. The 

scenario was done in curved tunnel for cars with concrete 

walls and with small metal sheets on both sides as shown 

in Fig. 4. The experimental setup consists of two carts. 

One cart is used to hold the transmitter and the other one 

is used to hold the receiving antenna and computer for 

receiving data collection and analysis as shown in Fig. 5. 

Handheld RF Signal Generator (RFEGEN 1.12) with 

dipole antenna with gain of 2.2 dBi is used as transmitter, 

while the receiver is RF Viewer wireless USB dongle 

and data is collected using computer software package 

RF spectrum analyzer (TOUCHSTONE PRO). The 

transmitting and receiving antennas are kept horizontally 

polarized and separated by a constant distance of 100 m. 

The tunnel width is 9.2 m and a length of 195 m. The 

height of the tunnel is 5.8 m. The height of both 

transmitting and receiving antennas is kept 1.3 m above 

the ground.  

Figure 6 shows a comparison between measured 

total attenuation rate in dBm and the calculated one by 

using the proposed model. Good agreement between the 

measured and calculated results is obtained. The slight 

differences can be explained due to errors in the manual 

positioning of the receiving antenna and differences due 

to the boundary conditions of the actual tunnel and the 

existence of the small metal sheets. The calculated error 

between the model and measured results is about 12.3%. 

 

 
 

Fig. 4. Curved rectangular tunnel for cars, width = 9.2 m, 

length = 195 m and height = 5.8 m. 

 

 
 (a) 

 
 (b) 

 

Fig. 5. Measurement setup: (a) transmitter (RF Signal 

Generator, and (b) receiver (computer software package 

RF spectrum analyzer). 

 

 
 

Fig. 6. Attenuation in curved rectangular tunnel with HP 

modes, tunnel dimensions are 𝑎 = 9.2 m, b = 5.8 m,
and  R/a = 56. 
 

V. CONCLUSION 
A new approach is proposed to drive an approximate 

formula for the total attenuation rate in curved 

rectangular tunnel. The proposed model takes into 

consideration the attenuation effect due to imperfect 

conductivity of the upper and lower walls in addition to 

the effect of the side walls. The effect of the flat upper 

and lower walls are approximated by the corresponding 

effect of the upper and lower walls in rectangular tunnel. 

It is found that the attenuation due to the side (curved) 

wall is much higher than the attenuation of the upper and 

lower flat walls. The proposed total attenuation rate is 

verified by comparison with experimental results. Good 

agreements are obtained from these comparisons. 
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