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Abstract ─ An efficient and accurate technique is 

introduced to calculate the scattered electromagnetic 

(EM) fields from an open-ended circular cavity (OECC). 

In this paper, it is assumed that the OECC is perforated 

in an infinite perfect electric conductor (IPEC). Then, the 

scattered fields are calculated using modal Method of 

Moments. The complexity and computational cost of the 

encountered quadruple integrals are addressed in detail. 

Here, the singularities are extracted and resolved. Next, 

the scattered far field of a circular PEC plate of the same 

size is calculated by physical optics approximation. The 

final OECC scattered field is the sum of these two 

solutions. A very good agreement is observed between 

the results of this method and full wave numerical 

simulations and measurements. The proposed approach 

is highly efficient and accurate over a wide range of 

frequencies and incidence angles, making it appealing 

for analysis of large frequency dispersive structures. 

 

Index Terms ─ Electromagnetic scattering, modal 

moment method, open-ended circular cavity. 
 

I. INTRODUCTION 
Electromagnetic (EM) scattering from open-ended 

waveguides is an important and challenging problem in 

applied electromagnetics. Ducts and jet engine inlets that 

significantly contribute to the total Radar Cross Section 

(RCS) can be modeled by waveguide structures. The 

subject is also important in target recognition, object 

classification, and remote sensing applications.  

An informative review of the existing methods for 

scattering analysis of open-ended cavity structures is 

presented by Anastassiue [1]. In this review, the methods 

are classified into two major categories for arbitrary 

shapes and canonical waveguides. For arbitrary structures, 

numerical techniques are reported [2-4]. In spite of  

their generality for handling complex geometries, these 

methods are computationally limited to small scatterers, 

particularly in wideband analysis. Various hybrid methods 

are developed to reduce the computational burden [5-6]. 

At high frequencies, where the cavity dimensions are 

large compared to the wavelength, asymptotic methods 

such as Physical Optics (PO), Soothing and Bouncing 

Rays (SBR) or the method of Generalized Ray Expansion 

(GRE) are reported [7-9]. 

Recently, a full wave approach by using finite-

element sub-domain based scattering matrix methodology 

is proposed for open-ended cavities which aim to solve 

electrically large problem efficiently by using a reduced-

order modeling technique. The efficiency in this model 

reduction is achieved by changing from finite element 

degrees of freedom to guided wave participation factors 

[10, 11]. 

For open-ended rectangular or circular waveguides, 

modal methods are utilized to model the wave propagation 

through the duct [12-14]. Modal analysis is also used  

to model multi-section inlets or complex terminated 

geometries containing hubs or straight blades [15, 16]. 

This efficient method is extensively used with a 

satisfactory level of accuracy for various cavity problems. 

Here, a full wave modal moment technique (modal 

MoM) is offered to evaluate the scattered fields from an 

open-ended circular cavity (OECC). First, the modal 

MoM is employed to calculate the scattered field from 

an OECC perforated in an infinite perfect electric 

conductor (IPEC). In this phase, all the mutual couplings 

between the propagating and evanescent modes excited 

at the aperture are considered efficiently in the moment 

admittance matrix. Second, the scattered field from a 

PEC plate of the same shape and size of the waveguide 

aperture is calculated by PO method. The two solutions 

of the scattered fields are added to obtain the scattered 

field of an OECC.  

The total unknown magnetic current on the aperture 

is represented by an entire domain vector wave function 

in cylindrical coordinates. The continuity of the magnetic 

field on the aperture is enforced and the resulted integral 

equation is solved by Galerkin method. 

Here, the computational complexity is carefully 

addressed by resolving singularities and decreasing the 

order of integrations.  

Monostatic Radar Cross Section (RSC) of various 

OECCs are calculated and compared with full wave 

numerical methods and measurements. An excellent 
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agreement is observed between the results for both 

vertical and horizontal polarizations. It is shown that 

adding the scattered field of the PEC to the results of the 

waveguide terminated by an IPEC removes the effect of 

IPEC presence, especially at low grazing angles. This 

cost effective approach could be used for wideband time-

frequency dispersion analysis of open-ended circular 

cavities. 

In Section 2, the mathematical formulation of 

scattering form an OECC at different polarizations is 

presented. Section 3 contains the comparison between 

the results of this approach and Finite Element-Infinite 

Element (FE-IE) approach [4], the Multi-Level Fast 

Multipole Method (MLFMM) by the commercial software 

FEKO and measurements. The concluding remarks are 

given in Section 4. 

 

II. MATHEMATICAL FORMULATION 
In this section, the scattered far field for a real 

OECC is formulated for an arbitrarily polarized incident 

plane wave based on modal Method of Moments (modal 

MoM). 

 

A. Problem description and solution steps  

Figure 1 shows a perfect electric conductor OECC. 

The waveguide is open ended at one side and shorted  

at the other. L  is the length of the cavity and D  is its 

diameter. The goal is the evaluation of the scattered far 

fields in the z > 0 half space, when the cylinder is 

obliquely illuminated by a plane wave incident at 

(θi , ϕi): 

�⃗⃗� 𝑖𝑛𝑐 = 𝑒
−𝑗�⃗� 𝑖∙𝑟 𝑖(𝐸𝑖𝑛𝑐

𝜃 �̂�𝜃 + 𝐸𝑖𝑛𝑐
𝜙
�̂�𝜙), (1) 

where, 

k⃗ i = k0ûi = k0[cos(θi) cos(ϕi) ûx 
+cos(θi) sin(ϕi) ûy + sin(θi) ûz], 

(2) 

is the wave vector and k0 = 2π/λ0 is the free space wave 

number. We note that the unit for all the angles in the 

text is radian.  

Here, let a = D/λ0 be the normalized aperture 

diameter, l = L/λ0 be the normalized cavity length and 

also k̅ = k0/λ0 be the normalized value of wave number 

with respect to the wavelength. 

Due to axial symmetry, one can arbitrarily set ϕi = 0  
and then analyze the problem for the perpendicular 

polarization (TM) and the parallel polarization (TE). In 

the following derivations, ∥ and ⊥ represent TE and TM 

polarizations, respectively as shown in Fig. 2. Dividing 

the incident wave into two polarizations leads to Einc
θ =

E0
∥  and Einc

ϕ
= E0

⊥, as well as explicit expressions for  

the interior EM fields in terms of modal expansions. 

Similarly, back scattered field can be represented by a 

diagonal normalized scattering matrix as in [13]. The 

backscattered field for the observation point r s is: 

�⃗⃗� s(r s) = 𝑬
s∥(r s)ûθ + 𝑬

s⊥(r s)ûϕ. (3) 

Now, the problem is solved in two steps as follows: 

Step 1: It is assumed that the cavity’s aperture is 

perforated in an IPEC and then EM scattered fields are 

calculated. Here, applying the surface equivalence 

principle and enforcing the magnetic field boundary 

condition on the aperture results in an integral equation 

with unknown magnetic currents in which the dyadic 

Green’s functions of the circular cavity and the upper 

half-space are utilized. The magnetic currents on the 

aperture (M⃗⃗⃗ Γ) are expanded in cylindrical entire domain 

basis functions for evaluation. This derivation is based 

on an infinite ground plane assumption and is not 

accurate for a real OECC [17]. However, the modification 

in step 2 corrects the scattered field calculations.  

Step 2: Now, the scattered field of step 1 is corrected 

using the approach of Zdunek and Rachowicz [17]. The 

correction is done by adding the PO scattered field of a 

co-located hypothetical PEC lid of the aperture size to 

the previously calculated one. The simple modification 

provided by �⃗⃗� lid
s (𝑱 Γ) is shown to be corrective, especially 

for close to normal incidence angles on the aperture. 

 

 
 

Fig. 1. Geometry of the problem. 
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Fig. 2. Perforated OECC in an IPEC, illuminated by: (a) 

horizontally polarized, and (b) vertical polarized incident 

wave. 
 

B. Modal MoM solution for an OECC terminated by 

an IPEC  

Here, it is assumed that the aperture of OECC is 

perforated in an IPEC. This structure is analyzed by 

modal MoM and is called GP (Ground Plane) model. The 

unknown electric field on the aperture is expanded by 

modal functions for the TM and TE polarizations with 

unknown coefficients as: 

�⃗⃗� Γ
∥ = ∑∑{𝐶𝑛𝑚

𝐌𝐨 �⃗⃗⃗� 𝜇𝑛𝑚
𝐨 + 𝐶𝑛𝑚

𝐍𝐞 �⃗⃗� 𝜆𝑛𝑚
𝐞 },

𝑁

𝑛=0

𝑀

𝑚=0

 (4) 

�⃗⃗� Γ
⊥ = ∑∑{𝐶𝑛𝑚

𝐌𝐞 �⃗⃗⃗� 𝜇𝑛𝑚
𝐞 }

𝑁

𝑛=0

𝑀

𝑚=0

, (5) 

where Γ = {r ∈ ℝ2 ∶  0 < ρ < D, z = 0} is the domain 

of the aperture and nm represents the pair of indices for 

the considered modes [18]. �⃗⃗⃗� 𝜇𝑛𝑚
𝐞 , �⃗⃗⃗� 𝜇𝑛𝑚

𝐨 , �⃗⃗� 𝜆𝑛𝑚
𝐞  (and 

�⃗⃗� 𝜆𝑛𝑚
𝐨 ) are even and odd modal functions as reported in 

[18] and shown at the bottom of this page. 

In (5), due to the orthogonality between incident wave 

and �⃗⃗� 𝜆𝑛𝑚
𝐨  on the aperture, all corresponding excitation 

coefficients are zero. In (6) and (7), 𝐽𝑛(⋅) and 𝐽𝑛
′ (⋅) are 

the Bessel function of first kind and its derivative with 

𝒵𝑛𝑚 and 𝒵𝑛𝑚
′  as their zeroes respectively. We define 

λ𝑛𝑚 = 2𝒵𝑛𝑚/D and μ𝑛𝑚 = 2𝒵𝑛𝑚
′ /D. In addition, Π𝑛𝑚

  

and Π𝑛𝑚
′  are normalization factors for transverse 

components of 𝑛𝑚th TE or TM mode respectively; 

Π𝑛𝑚
 = [𝐽𝑛

′ (𝒵𝑛𝑚)√0.5𝜋𝒵𝑛𝑚
2 (1 + 𝛿𝑛)]

−1

, (8) 

Π𝑛𝑚
′ = [𝐽𝑛(𝒵𝑛𝑚

′ )√0.5𝜋(𝒵𝑛𝑚
′2 − 𝑛2)(1 + 𝛿𝑛)]

−1

, (9) 

where δ𝑛 is the Dirac delta function.  

The external and internal regions are separated by 

an equivalent magnetic currents on the aperture using the 

equivalence principle. The equivalent magnetic currents are: 

�⃗⃗⃗� Γ
∥ = �̂� × �⃗⃗� Γ

∥ = ∑∑{𝐶𝑛𝑚
𝐌𝐨 �⃗⃗� 𝜇𝑛𝑚

𝐨 − 𝐶𝑛𝑚
𝐍𝐞 �⃗⃗⃗� 𝜆𝑛𝑚

𝐞 },

𝑁

𝑛=0

𝑀

𝑚=0

 (10) 

�⃗⃗⃗� Γ
⊥ = �̂� × �⃗⃗� Γ

⊥ = −∑∑{𝐶𝑛𝑚
𝐌𝐞 �⃗⃗� 𝜇𝑛𝑚

𝐞 }

𝑁

𝑛=0

𝑀

𝑚=0

. (11) 

TE and TM Magnetic fields in the internal region 

(Ωin = {r ∈ ℝ
3: 0 < ρ < D,−L < z < 0}) are calculated 

from the sources in (10) and (11) using G̿E′, which is the 

circular cavity dyadic Green’s function of the second 

kind [18]. The Dyadic Green’s function can be used to 

calculate the magnetic fields due to arbitrary oriented 

magnetic current source inside the cavity. It is obtained 

from the solution of vector eigenfunctions in cylindrical 

coordinate system satisfying the boundary conditions of 

the cylindrical cavity and provides the basic mathematical 

tool for numerical study of the cylindrical cavities by 

MoM. The resultant magnetic fields at z = 0 are: 

�⃗⃗⃗� in
∥ |

𝑧=0
= (12) 

−∑∑{
ℎ̅𝑛𝑚
𝜇
cot(ℎ̅𝑛𝑚

𝜇
𝑙/𝑎)

�̅�2
𝐶𝑛𝑚
𝐌𝐨 �⃗⃗� 𝜇𝑛𝑚

𝐞
𝐨   

𝑁

𝑛=0

𝑀

𝑚=0

−
cot(ℎ̅𝑛𝑚

𝜆 𝑙/𝑎)

ℎ̅𝑛𝑚
𝜆

𝐶𝑛𝑚
𝐍𝐞 �⃗⃗⃗� 

𝜆𝑛𝑚

𝐞
𝐨 } , 

�⃗⃗⃗� in
⊥ |

𝑧=0

= −∑∑{
ℎ̅𝑛𝑚
𝜇
cot(ℎ̅𝑛𝑚

𝜇
𝑙/𝑎)

�̅�2
𝐶𝑛𝑚
𝐌𝐞 �⃗⃗� 𝜇𝑛𝑚

𝐞
𝐨 }

𝑁

𝑛=0

,

𝑀

𝑚=0

 
(13) 

where ℎ̅𝑛𝑚
𝜇

= √k̅2−𝒵𝑛𝑚
′2 , ℎ̅𝑛𝑚

𝜆 = √k̅2−𝒵𝑛𝑚
2  and �⃗⃗� 𝜇𝑛𝑚

𝐞
𝐨 =

{
�⃗⃗� 𝜇𝑛𝑚
𝐞

�⃗⃗� 𝜇𝑛𝑚
𝐨

} stands for simultaneous inclusion of both even 

and odd functions. 

The magnetic current for the external region (Ωin =
{r ∈ ℝ3 ∶  z > 0}) is the negative of (10) and (11) due to 

the continuity of the tangential electric field. Addition of 

IPEC to the problem allows the application of the half-

space Green’s function. Magnetic fields at z = 0 become: 

�⃗⃗⃗� out
∥ |

𝑧=0
=
−2

𝑎
∬(1 +

1

𝑘0
2 ∇∇ ∙) �⃗⃗⃗�

 
Γ
∥

 

Γ

𝐆0(�⃗� , �⃗� 
′)ds′, (14) 

�⃗⃗⃗� out
⊥ |

𝑧=0
=
2

𝑎
∬(1 +

1

𝑘0
2 ∇∇ ∙) �⃗⃗⃗�

 
Γ
⊥

 

Γ

𝐆0(�⃗� , �⃗� 
′)ds′, (15) 

where G0(r , r 
′) =

ejk|r⃗ −r⃗ 
′|

4π|r⃗ −r⃗ ′|
, and the surface integral is  

{
�⃗⃗⃗� 𝜇𝑛𝑚
𝐞

�⃗⃗⃗� 𝜇𝑛𝑚
𝐨

} = Π𝑛𝑚
′ [

𝑛

𝜌
𝐽𝑛(𝜇𝑛𝑚𝜌) {

− sin(𝑛𝜙)

cos(𝑛𝜙)
} �̂�𝜌 − 𝜇𝑛𝑚𝐽𝑛

′ (𝜇𝑛𝑚𝜌) {
cos(𝑛𝜙)
sin(𝑛𝜙)

} �̂�𝜙], (6) 

{
�⃗⃗� 𝜆𝑛𝑚
𝐞

�⃗⃗� 𝜆𝑛𝑚
𝐨

} = Π𝑛𝑚
 [𝜆𝑛𝑚𝐽𝑛

′ (𝜆𝑛𝑚𝜌) {
cos(𝑛𝜙)

sin(𝑛𝜙)
} �̂�𝜌 −

𝑛

𝜌
𝐽𝑛(𝜆𝑛𝑚𝜌) {

sin(𝑛𝜙)
− cos(𝑛𝜙)

} �̂�𝜙]. (7) 
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taken over the aperture. 

The continuity of the tangential magnetic field at 

z = 0 leads to: 

�⃗⃗⃗� in
∥,⊥|

𝑧=0
− �⃗⃗⃗� out

∥,⊥ |
𝑧=0

= 2�⃗⃗⃗� inc
∥,⊥ |

𝑧=0
. (16) 

Factor 2 in (16) comes from the summation of the 

incident and reflected fields in the external region. 

Equation (16) is a Magnetic Field Integral Equation 

(MFIE) and can be converted to matrix equations using 

the Galerkin method. The matrix equations have the 

form [K]∥[C]∥ = [B]∥ and [K]⊥[C]⊥ = [B]⊥, where [K]∥ 
and [K]⊥ are the moment admittance matrices and [B]∥ 
and [B]⊥ are the excitation matrices. Also, [C]∥ and [C]⊥ 

consist of the unknown modal amplitudes for the two 

polarizations that depend on the incident wave angle. 

 
C. Mathematical consideration in admittance and 

excitation matrices 

The above matrices have the following general 

forms for the two polarizations: 

[K
〈𝐌𝐞,𝐌𝐞〉 K〈𝐌

𝐞,𝐍𝐨〉

K〈𝐍
𝐨,𝐌𝐞〉 K〈𝐍

𝐨,𝐍𝐨〉
] [C

𝐍𝐞

C𝐌
𝐨] = [

B〈𝐍
𝐞,�⃗⃗⃗� inc

∥ 〉

B〈𝐍
𝐨,�⃗⃗⃗� inc

∥ 〉
], (17) 

[K〈𝐍
𝐨,𝐍𝐨〉][C𝐌

𝐞
] = [B〈𝐍

𝐞,�⃗⃗⃗� inc
⊥ 〉]. (18) 

Since computing admittance and excitation matrix 

for the entire domain moment method can impose large 

computational burden, it is necessary to evaluate them 

efficiently. The admittance matrices in TE polarization 

is a block structured matrix. The elements in [K]∥ and 
[K]⊥ correspond to different interactions between 

expansion and weighting functions in Galerkin method. 

Hence, if W𝑝𝑞(ρ, ϕ) and E𝑛𝑚(ρ′, ϕ′) are the 𝑝𝑞th 

weighting coefficient and nmth expansion functions, 

each element of admittance matrices in [K]∥ or [K]⊥ will 

have the following form: 

K〈𝐖𝑝𝑞,𝐄𝑛𝑚〉 = V〈𝐖𝑝𝑞 ,𝐄𝑛𝑚〉+ Z〈𝐖𝑝𝑞,𝐄𝑛𝑚〉, (19) 

where V〈𝐖𝑝𝑞,𝐄𝑛𝑚〉 and  Z〈𝐖𝑝𝑞,𝐄𝑛𝑚〉 are related to inside 

and outside field contributions, respectively. Then, 

V〈𝐖𝑝𝑞,𝐄𝑛𝑚〉 =∬∬𝐖𝑝𝑞 ⋅ 𝐄𝑛𝑚

 

Γ′

ds′
 

Γ

ds, (20) 

Z〈𝐖𝑝𝑞,𝐄𝑛𝑚〉 =
2

𝑎
∬∬{𝐖𝑝𝑞 ⋅ 𝐄𝑛𝑚 −

1

𝑘0
2 [∇ ∙ 𝐖𝑝𝑞]

 

Γ′

 

Γ

∙ [∇′ ∙ 𝐄𝑛𝑚]} 𝐆0ds
′ds, 

(21) 

where, 

〈𝐖𝑝𝑞 , 𝐄𝑛𝑚〉 ∈ (22) 

{
〈�⃗⃗⃗� 𝜆𝑝𝑞

𝐞 , �⃗⃗⃗� 𝜆𝑛𝑚
𝐞 〉 , 〈�⃗⃗⃗� 𝜆𝑝𝑞

𝐞 , �⃗⃗� 𝜇𝑛𝑚
𝐨 〉 , 〈�⃗⃗� 𝜇𝑝𝑞

𝐨 , �⃗⃗⃗� 𝜆𝑛𝑚
𝐞 〉

〈�⃗⃗� 𝜇𝑝𝑞
𝐨 , �⃗⃗� 𝜇𝑛𝑚

𝐨 〉 , 〈�⃗⃗� 𝜇𝑝𝑞
𝐞 , �⃗⃗� 𝜇𝑛𝑚

𝐞 〉
}.   

While numerical evaluation of (20) is straight 

forward, evaluation of (21) is complicated due to a 

singularity at r = r ′ in G0(r , r 
′). By applying the 

following modifications, the singularity in (21) is  

removed and the integrations are computed efficiently. 

First, at each integration point (ρ, ϕ) in (21),  

a change of variables x′ − ρ cos(ϕ)= ρ′ cos(ϕ′) and  

y′ − ρ sin(ϕ)= ρ′ sin(ϕ′) is done in prime coordinates 

in order to shift the origin into the point (ρ, ϕ). Even 

though this makes the prime variable integration 

dependent on ρ and ϕ, but removes the singularity. Next, 

the integration on ϕ is simply carried out analytically and 

hence, the order of integration is decreased by one. In 

addition, orthogonality of the functions with unequal 𝑝 

and 𝑛, which leads to zero entries in most of the elements 

in [K]∥ and [K]⊥, is employed. For instance, outside field 

contributions of a single element in K〈N
o,No〉 can be 

reduced to the triple integral as follows: 

 
where, X = ρ + ρ′ejϕ

′
= |X|ejx and Υ = −ρ cos(ϕ′) +

√1 − ρ2 sin(ϕ′) are defined variables that appear in  

the evaluation of non-zero entries for all blocks of 

admittance matrices. The adaptive quadrature integration 

method of [19] is used to compute integrations similar to 

(23) for [K]∥ and [K]⊥. 

Here we note that mentioned modifications to  

the integrals of form (21) extensively reduce the 

computational cost in modal MoM solution. In contrast 

to other numerical methods (e.g., sub-domain MoM), 

this technique deals with a fairly small, sparse, 

symmetric and well-conditioned matrices. Furthermore, 

most of the computational cost in this method is due to 

the calculation of the wave coupling through the 

aperture, which is independent of the cavity depth or the 

incident wave direction. Thus, the method is very 

efficient even for very long dispersive OECCs. 

Finally, elements of the excitation matrices are: 

B〈𝐖𝑝𝑞,�⃗⃗⃗�
 
inc
∥ 〉 =∬𝐖𝑝𝑞 ⋅ �⃗⃗⃗� inc

∥ ds,   

 

Γ

 (24) 

B〈𝐖𝑝𝑞,�⃗⃗⃗�
 
inc
⊥ 〉 =∬𝐖𝑝𝑞 ⋅ �⃗⃗⃗� inc

⊥ ds.  

 

Γ

 (25) 

Integrals in (24) and (25) are analytically evaluated. 

In horizontal illumination where, 

�⃗⃗⃗� inc
∥ =

−𝐸0
∥

𝜂0
(sin(𝜙)�̂�𝜌+cos(𝜙)�̂�𝜙). (26) 

The excitation vector is: 

B
〈�⃗⃗� 𝜇𝑝𝑞
𝐨 ,�⃗⃗⃗� inc

∥ 〉

= −4𝜋𝐸0
∥Π𝑝𝑞

′ (−𝑗)𝑝−1
𝑝𝐽𝑝(𝒵𝑝𝑞

′ )𝐽𝑝(2𝜋𝑎 sin 𝜃𝑖)

2𝜋𝑎 sin 𝜃𝑖
. 

(27) 

Z
〈�⃗⃗� 𝜇𝑝𝑞

𝐨 ,�⃗⃗� 𝜇𝑛𝑚
𝐨 〉

= 𝛿(𝑝 − 𝑛)Π𝑝𝑞
′ Π𝑛𝑚

′ ∫ 𝑑𝜌
1

𝜌=0

∫ 𝑑
𝜋

𝜙′=0

𝜙′∫
Υ

𝜌=0

 

{[−𝒵𝑝𝑞
′ 𝒵𝑝𝑚

′ 𝐽𝑝−1(𝒵𝑝𝑞
′ 𝜌) +

𝑝𝒵𝑝𝑚
′

𝜌
𝐽𝑝(𝒵𝑝𝑞

′ 𝜌)]𝐽𝑝+1(𝒵𝑝𝑚
′ |𝑋|) +

[
𝑝𝒵𝑝𝑞

′

|𝑋|
𝐽𝑝−1(𝒵𝑝𝑞

′ 𝜌) − (
𝒵𝑝𝑞
′ 𝒵𝑝𝑚

′

2𝜋𝜌
)

2

𝐽𝑝(𝒵𝑝𝑞
′ 𝜌)]𝐽𝑝(𝒵𝑝𝑚

′ |𝑋|)}

 

cos(𝑝𝑥) 𝑒𝑗2𝜋𝑎𝜌′𝑑𝜌′,  (23) 
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D. Evaluation of the scattered field 

By solving the matrix equation of (17) and (18), 

unknown equivalent magnetic currents are obtained. 

Using the image theory and the free half space Green’s 

function, the total backscattered fields for both 

polarizations at distance r̅s = r/λ0 and direction of θs 
are: 

�⃗⃗� 𝑐𝑎𝑣𝑖𝑡𝑦
𝑠∥ (�⃗⃗⃗� 𝛤) =−𝐸0

∥ 𝑎𝑒
2𝜋�̅�𝑠

�̅�𝑠
 (28) 

× ∑∑

{
 
 

 
 𝐶𝑛𝑚

𝐌𝐨Π𝑛𝑚
′ (−𝑗)𝑛−1

𝑛𝐽𝑛(𝒵𝑛𝑚
′ )𝐽𝑛(�̅� sin 𝜃𝑠)

�̅� sin 𝜃𝑠

+𝐶𝑛𝑚
𝐍𝐞 Π𝑛𝑚

 (−𝑗)𝑛−1
𝐼𝑛(𝒵𝑛𝑚, �̅� sin 𝜃𝑠)

�̅� sin 𝜃𝑠 }
 
 

 
 

,

𝑁

𝑛=0

𝑀

𝑚=0

 

�⃗⃗� 𝑐𝑎𝑣𝑖𝑡𝑦
𝑠⊥ (�⃗⃗⃗� 𝛤) =𝐸0

⊥ 𝑎𝑒
2𝜋�̅�𝑠

�̅�𝑠
 (29) 

× ∑∑{𝐶𝑛𝑚
𝐌𝐞Π𝑛𝑚

′ (−𝑗)𝑛−1 cos 𝜃𝑠
𝐼𝑛(𝒵𝑛𝑚

′ , �̅� sin 𝜃𝑠)

�̅� sin 𝜃𝑠
} ,

𝑁

𝑛=0

𝑀

𝑚=0

 

where 𝐼𝑛(∙,∙) is a frequently encountered integral in the 

equations, defied as: 

𝐼𝑛(𝑥, 𝑦) = ∫ {(𝑛 𝜌⁄ )
2
𝐽𝑛(𝑥𝜌)𝐽𝑛(𝑦𝜌)

1

0

+ 𝑥𝑦𝐽𝑛
′ (𝑥𝜌)𝐽𝑛

′ (𝑦𝜌)} 𝜌𝑑𝜌. 

(30) 

 

E. Scattered field of a real OECC 

The interior scattered fields computed from (28) and 

(29) are the dominant part of the total scattered signal 

[9]. Even though assumption of an IPEC simplifies the 

analysis, but it degrades the results, especially at grazing 

angles [13]. The results could be corrected by adding the 

PO solution of the scattered field from a hypothetical 

PEC plate at the aperture: 

�⃗⃗� 𝑡𝑜𝑡𝑎𝑙
𝑠∥,⊥ = �⃗⃗� 𝑐𝑎𝑣𝑖𝑡𝑦

𝑠∥,⊥ (�⃗⃗⃗� 𝛤) + �⃗⃗� 𝑙𝑖𝑑
𝑠∥,⊥(𝑱 𝛤), (31) 

where 

{
�⃗⃗� 𝑙𝑖𝑑
𝑠∥ (𝑱 𝛤)

�⃗⃗� 𝑙𝑖𝑑
𝑠⊥ (𝑱 𝛤)

} =
𝑗�̅�𝑒2𝜋�̅�𝑠𝐽1[�̅�(sin𝜃𝑖+sin 𝜃𝑠)]

2𝜋�̅�𝑠�̅�(sin 𝜃𝑖+sin 𝜃𝑠)
{
𝐸0
∥ cos 𝜃𝑠

𝐸0
⊥ cos 𝜃𝑠

}. (32) 

From now, �⃗⃗� total
s∥,⊥

 is referred to modal MoM3D 

model in the text. 

 

III. NUMERICAL RESULTS 
In this section, the monostatic RCS of various 

targets are evaluated for horizontal and vertical 

polarizations. The results are compared with Finite 

Element Method (FEM) [13], Multi-Level Fast Multi-

pole Method (MLFMM) generated by the commercial 

software FEKO and measurements [20], [21] as well. 

Generally, measurements are conducted in the anechoic 

chamber by placing the OECC as a target in front of the 

standard gain horn antenna, while absorbing materials 

are used to diminish scattering from the exterior of the 

cavity to reduce its contribution in the total scattering. 

In large waveguides, shooting and bouncing rays 

method [13] is used for validation. For large apertures or 

low grazing angles, the field modes 𝑚 and 𝑛 should be 

large enough to assure convergence.  

First, a circular cavity with D = 2λ, L = 4λ and  

λ = 3 cm is analyzed. Figure 3 shows the monostatic 

RCS for horizontal illumination as a function of θi for 

𝑚 = 8 and 𝑛 = 10. The result of modal MoM without 

correction (GP model) is also shown in Fig. 3. The 

correction is effective at all incidence angles. Please note 

that the presence of IPEC underestimates the RCS. The 

results of FEM [15], FEKO and measurements [20] show 

a very good agreement with this efficient method. 

 

 
 

Fig. 3. Horizontal polarization monostatic RCS (𝑑𝐵/𝑚2) 
of an OECC with 𝐷 = 2𝜆 , 𝐿 = 4𝜆 versus incidence 

angle. 
 

Figure 4 depicts the convergence of RCS results for 

various modes for vertical polarization at 10 GHz as a 

function of incidence angle. As expected, as incidence 

angle increases, a larger number of modes are needed for 

convergence. Considering the hierarchy of the moment 

matrix, as the number of modes increase, we only need 

to add the computations of the new modes because 

previously computed and stored entries are still valid. 

Monostatic RCS for the same OECC for vertical 

polarization is compared to reference methods in Fig. 5. 

A good agreement between these methods is observed. 

 

 
 

Fig. 4. Convergence of RCS with increasing the number 

of modes for an OECC with 𝐷 = 2𝜆 , 𝐿 = 4𝜆 illuminated 

by a vertically polarized incident wave. 
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Fig. 5. Vertical polarization monostatic RCS (dB/m2) of 

an OECC with D = 2λ , L = 4λ  versus incidence angle. 
 

It should be noted that modal MoM is highly 

accurate and computationally efficient. Due to the 

similarity of formulations of the two polarizations, 

entries of matrices could be evaluated at the same time. 

For example, Z
〈�⃗⃗� μ𝑝𝑞
e ,�⃗⃗� μ𝑛𝑚

e 〉
 and Z

〈�⃗⃗� μ𝑝𝑞
o ,�⃗⃗� μ𝑛𝑚

o 〉
 in 

corresponding blocks of K〈N
e,Ne〉 and K〈N

o,No〉 can be 

computed simultaneously. This significantly reduces the 

computational time. CPU time for the RCS calculation 

of the above OECC for both polarizations is 84.22 sec, 
while the same simulation with FEKO using MLFMM is 

about 28 minutes on an Acer Aspire 1.66 GHz laptop 

with 2GB of RAM. 

As a second example, a straight circular cylindrical 

air-intake channel with D = 6.274 cm and L = 21.59 cm 

is analyzed. Convergence is achieved by 54 modes  

(𝑚 = 4 and 𝑛 = 6) of horizontal and 56 modes (m = 6 

and n = 8) of vertical polarizations. The same problem 

is studied in [17] by FE-IE and in [21] with internal 

irradiation and diffraction model. Measurements are also 

reported in [17]. Figure 6 shows comparisons of RCS at 

15.2 GHz. A very good agreement is observed between 

these methods at both polarizations. 

For the above OECC, the relative amplitude of various 

modes in horizontal polarization is plotted in Fig. 7.  
 

 
  (a) 

 
  (b) 

 

Fig. 6. Monostatic RCS versus incidence angle for a 

cylindrical PEC cavity 𝐷 = 6.274 𝑐𝑚 and 𝐿 = 21.59 𝑐𝑚: 

(a) horizontal polarization, and (b) vertical polarization. 

 

 
 

Fig. 7. Comparison of the relative amplitude of irradiating 

modes in vertical polarization. 

 

Irradiation amplitude of each component is 

normalized to the dominant propagating mode value, 

TE11. As observed, higher order vanescent modes might 

even have some contributions in the total scattered field. 

Sparsity pattern (non-zero element plot) of moment 

matrix for vertical polarization is depicted in Fig. 8. For 

this problem, [K]∥ is a 54 × 54 sparse matrix with 612 

non-zeros (%21), while the condition number is 34.9902. 

As mentioned before, the modal MoM admittance matrix 

is symmetrical and well-conditioned. Even though the 

size of [K]∥ is favourably small, the above mentioned 

properties further expedites the numerical solution by 

using direct or iterative methods. 

As another example, a cylindrical large cavity with 

D = 10λ and D = 30λ at 10 GHz is considered. This 

structure is also studied by Ling et al. with SBR method 

[13]. RCS results are shown in Figs. 9 and 10 at both 

polarizations. For this large structure, the modes 

corresponding to 𝑚 = 10 and 𝑛 = 14  yield convergent 

results. As mentioned before, the computational burden 

for this long cavity is mainly due to computing the 

coupling on the aperture and not the cavity length. 

 

ACES JOURNAL, Vol. 31, No.11, November 20161276



 
 

Fig. 8. Sparsity pattern of admittance matrix in modal 

MoM solution for horizontal polarization. 
 

 
 

Fig. 9. Monostatic RCS of an OECC with 𝐷 = 10𝜆  

and 𝐿 = 30𝜆 versus incidence angle for horizontal 

polarization. 
 

 
 

Fig. 10. Monostatic RCS of an OECC with D = 10λ  

and L = 30λ versus incidence angle for vertical 

polarization. 

 

IV. CONCLUSION 
Here, an efficient technique is introduced to analyze 

the scattered field from an open ended circular cavity 

(OECC) based on modal Method of Moments. Entire 

domain cylindrical vector wave functions are employed 

to express the fields on the cavity aperture and the dyadic 

Green’s functions of the circular cavity is used to 

formulate the fields inside OECC. At first, scattered field 

from a perforated OECC in an infinite PEC is calculated 

by applying the surface equivalence theorem and 

Galerkin method for solving the resultant integral 

equation. Then, the scattered field from a hypothetically 

PEC plate with the size and shape of the circular aperture 

is added to the previously calculated scattered field to 

compensate the effect of the infinite PEC assumption. 

This addition corrects the monostatic RCS results, 

particularly at close to grazing incident angles. 

Monostatic RCS of different size OECCs is 

calculated and compared with other numerical techniques 

and measurements. Different sizes are selected in order 

to demonstrate the capability of the proposed method to 

evaluate cavities with sizes including resonant size up to 

several wavelengths. Excellent agreement between the 

results proves the accuracy of the presented method. 

Since the method is based on the full wave modal  

MoM approach, the technique is very efficient for  

large structures compared to other numerical methods.  

In addition, further numerical considerations in the 

formulations have increased the efficiency of the 

method. 
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