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Abstract ─ As one of the important components in the 

rotating machinery, the condition of rolling element 

bearing has a great impact on the system performance. 

Therefore, the fault detection for the rolling element 

bearing is important and many methods have been 

proposed. Following our previous work on the outer  

race defect diagnosis, in this paper, the active magnetic 

bearing (AMB) is employed as an exciter to apply 

electromagnetic force to detect the inner race defects. 

The theoretical model of a nonlinear bearing-pedestal 

system model with the inner race defect under the 

electromagnetic force is developed and investigated.  

The simulation and experimental results show that the 

characteristic signal of inner race defect is amplified 

under the electromagnetic force through the AMBs, 

which is helpful for improving the diagnosis accuracy. 

 

Index Terms ─ Active magnetic bearings, fault detection, 

inner race, rolling element bearings. 
 

I. INTRODUCTION 
For the rotating machinery, the health condition  

of rolling element bearing has a great impact on the 

performances. Therefore, fault detection for the rolling 

element bearing is very important and many methods 

have been proposed, which can be classified as vibration 

measurement, acoustic measurement, temperature 

measurement and wear analysis [1]. Vibration 

measurement has been the most widely used method in 

the health monitoring application. 

A lot of methods have been proposed to model the 

vibration response of a bearing. McFadden and Smith 

[2,3] proposed a theoretical defected rolling element 

bearing model. Wang and Harrap [4] presented the 

envelope autocorrelation analysis for diagnosing multiple 

element defects of rolling element bearings. Tandon and 

Choudhury [5] investigated the dynamic response of the 

rings due to localized defects under axial load. Sunnersjo 

[6] proposed a two degrees of freedom (DOF) bearing 

dynamic model and applied Hertz contact theory to 

calculate the deflection. Feng [7] developed a four DOF 

bearing-pedestal model, which include two DOF pedestal 

model. Tadina [8] developed an improved bearing model 

and investigated the vibrations of a rolling element 

bearing during run-up. 

AMBs are commonly used as bearings to support 

rotor, but they also can be used for fault detection  

as exciters [9]. Humphris [10] utilized AMBs as both 

levitation and perturbation to monitor and diagnose the 

shaft condition. Zhu et al. [11] modeled a crack rotor 

levitated by AMBs and found that crack would have big 

effects on the whole system. Mani et al. [12,14] and 

Quinn et al. [13] applied excitation from the AMB to a 

cracked rotor bearing system and used multiple scale 

method to diagnose the rotor crack. Similarly, Sawicki 

[15] applied harmonic balance method based on 

sinusoidal excitation generated from AMBs for rotor 

crack detection. Chasalevris [16] investigated the 

response of a simple elastic rotor supported by two fluid-

film bearings, while one of the bearings was worn under 

the AMB transient excitation. 

Although AMBs have been used for the fault 

detection, few studies are reported on rolling element 

bearings. In our previous work [17], the AMB is employed 

as an exciter to detect the outer race defects and we found 

that the outer race fault signals amplified significantly 

under AMBs force. Following our previous work on  

the outer race defect, this paper investigates dynamic 

response of inner race defect under electromagnetic 

force excitation.  

The remainder of the paper is organized as follows. 

Section 2 describes the model of rolling element bearing 

system with inner race defect under AMB force. The 

simulation and experimental results are presented in 

Section 3 and Section 4, respectively. Conclusions are 

drawn in Section 5. 

 

II. ROLLING ELEMENT BEARING 

MODELING 

A. Contact force 

Figure 1 shows the bearing schematic, where 𝑁 is 

number of rolling elements; 𝑑𝑏 is the element diameter; 

𝐷  is the pitch diameter; 𝑟0  is the radial clearance; 𝛼  
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is and the contact angle. The bearing is modeled with  

two orthogonal DOF and the outer race is fixed in the 

pedestal. The slippage of rolling elements, the mass  

and the inertia of the rolling elements are ignored. The 

displacement of the shaft can be divided into x and y 

directions and the contact deformation for the 𝑖th rolling 

element 𝛿𝑖 is given by: 

 
0cos sin .i i ix y r      (1) 

The angle of the rolling element 𝜃𝑖 shown in Fig. 1 

is given as: 
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where 𝜔𝑠 is the shaft speed; 𝜔𝑐 is the cage speed; 𝑟  and 

𝑅 in Fig. 1 are the inner and outer race radius. 
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Fig. 1. Schematic of a rolling element bearing. 

 

According to the Hertz theory, the non-linear contact 

force 𝐹 is given by [1,18-19]: 

 ,n

bF K   (4) 

where 𝛿 is the contact deformation; 𝐾𝑏 is the nonlinear 

contact stiffness depending on the bearing geometry and 

the elasticity of material [18], for the rolling element 

bearing considered in this paper, the computed value is 

2.14 × 109 N/m1.5 ; the exponent 𝑛 = 1.5  is for ball 

bearings. Due to the fact that compression Hertz forces 

occurs only for positive values of 𝛿, therefore the γ𝑖 is 

employed to represents the contact state: 
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The contact force is the sum of each of the rolling  

elements and the total force along the x and y axes can 

be obtained as: 
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The damping of rolling element bearing can be 

estimated using Kramer method [20] as: 

   110.25 2.5 10 ,s lc K    (8) 

where 𝐾𝑙  is the linearized stiffness of the rolling element 

bearing.  

 

B. Inner race defect modeling 

The inner race defect is modeled as a slight dent and 

the geometrical interpretation of the faults is shown in 

Fig. 2. 
 

 

 

  

 
 

Fig. 2. Defect on inner race. 

 

The length of the dent is 𝑙  and the following 

relationship can be established from Fig. 2: 

  
22 / 2 ,b bd r r l    (9) 

  12sin / 2 ,l r   (10) 

where 𝑟𝑏 is the ball radius; 𝜑 is the central angle of the 

inner defect; 𝑑  is the max increment of the radial 

clearance.  

When the rolling element moves into the defected 

area, the radial clearance will increase rapidly, which 

causes a decline of the contact force and results vibration. 

The varying clearance ∆𝑑  caused by the defect is 

modeled as a half sinusoidal wave [17]. The relation 

between the varying clearance and angular position is 

give as follows: 
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The notation mod(𝜃𝑖,2π) in Eq. (11) denotes the 

modulo operation. From Eq. (9), the ∆𝑑(𝜃𝑖) value range 

is 0 to 3×10-3 mm considering 𝑙 as 0.2 mm. 

Therefore, when the rolling element is not located in 

the defected region, the actual radial clearance 𝑟𝑎 is: 

 
0.ar r  (12) 

When the rolling element is located in the defected 

region, the actual radial clearance 𝑟𝑎 is: 

 
0 .ar r d    (13) 

Therefore, the contact forces can be calculated as 

follows: 
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B. Bearing-pedestal modeling 

The model of Feng et al. [7] is adopted to study the 

dynamics of rolling element bearings, which is shown in 

Fig. 3. The model has four DOF, including two DOF of 

inner race (𝑥𝑠, 𝑦𝑠) and two DOF of pedestal (𝑥𝑝, 𝑦𝑝). 
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Fig. 3. Four-DOF bearing-pedestal model. 

 

Followed by the above analysis, the whole contact 

forces of the model considering inner race and pedestal 

can be calculated as follows: 
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Considering the nonlinear contact force, the 

equations of motion of bearing-pedestal system can be 

written as follows: 

 cos ,s s s s bx u s MXm x c x F F t F     (18) 

 sin ,s s s s by u s s MYm y c y F F t m g F      (19) 

 0,p p p p p p bxm x c x K x F     (20) 

 ,p p p p p p by pm y c y K y F m g      (21) 

where 𝑚𝑠 is the mass of the shaft and the inner race; 𝑐𝑠 

is the bearing damping; 𝑚𝑝 is the mass of the pedestal; 

𝐾𝑝 and 𝑐𝑝 are the stiffness and damping of the pedestal. 

𝐹𝑀𝑋 and 𝐹𝑀𝑌 is the electromagnetic force applied to the 

system in the x and y direction, respectively, which are 

presented later. 𝐹𝑢 is the unbalance force. 

 

C. AMB force modeling 

Ignoring the hysteresis loss and eddy current effect, 

the electromagnetic force provided by AMBs can be 

calculated by [21]: 
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where 𝜇0  is the permeability in the vacuum; 𝑛𝑎  is the 

number of coil windings; 𝐴 is the area of the pole face; 𝑖 
is the bias current value; 𝑠 is the nominal air gap and 𝛽 

is the angle between forces and magnetic poles. Table 1 

lists the AMB parameters. Figure 4 shows the schematic 

of the AMB structure adopted in this paper, which the 

bottom two poles are activated. 

 

Table 1: AMB parameters 

Air Gap (AMB clearance) 𝑠 0.28 mm 

Polar face area 𝐴 2.0×10-4m2 

Windings of a coil na 240 

Half angle between two poles 𝛽 22.5 degree 
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Fig. 4. The schematic of the AMB structure. 

 

When the rolling element is located at the defected 

region, the rotor and the pedestal will vibrate and the 

nominal air gap 𝑠  between the rotor and AMBs will 

change simultaneously since the AMBs are fixed on  

the stator together with the pedestal. Therefore, the 

electromagnetic force of each AMB can be written as: 
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Therefore, the total electromagnetic force along the 

x and y directions is: 

  1 2sin2 sin2 ,MX M MF F F     (25) 

  1 2cos2 cos2 .MY M MF F F     (26) 

 

III.SIMULATION RESULTS 

A. Model parameters 

The nonlinear differential Eq. (18-21) is evaluated 

numerically using the fourth-order Runge-Kutta algorithm 

and the transient response is obtained. The parameters 

adopted in simulation are shown in Table 2. 

 

Table 2: Model parameters 

1. Parameters of 61901 Rolling Element Bearings 

Outer race radius 𝑅 10.59 mm 

Inner race radius 𝑟 7.41 mm 

Number of ball 𝑁 10 

Contact stiffness 𝐾𝑏 2.14 × 109 N/m3 2⁄  

Ball diameter 𝑑𝑏 3.18 mm 

Pitch diameter 𝐷 18 mm 

Contact angle 𝛼 0°  

Radial clearance 𝑟0 3 𝜇m 

𝐵𝑁 4.1 

2. Other Inputs 

Mass of shaft/inner race 𝑚𝑠 1.2 kg 

Bearing contact damping 𝑐𝑠 200 N ∙ s/m 

Mass of pedestal 𝑚𝑝 2 kg 

Pedestal stiffness 𝐾𝑝 1.5 × 107 N/m 

Damping in pedestal 𝑐𝑝 3000 N ∙ s/m 

Bias current i 1 A 

 
The vertical acceleration responses for the pedestal 

with an inner racer faulty bearing are calculated 

respectively considering the electromagnetic force is 

applied or not. The frequency spectrum of the vibration 

signal is obtained using envelope method rather than  

the Fast Fourier Transform Algorithm (FFT) directly 

because in most cases, these defect frequencies cannot 

be detected in the frequency spectrum of a raw vibration 

signal due to the dominant high frequencies caused by 

the resonant components. 

 

B. Inner race defect under electromagnetic force  

For a rolling element bearing, the inner race defect 

frequency is given by [1]: 

 1
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where 𝑓𝑠 is the shaft rotating speed in Hz. 

The defect on the inner race will rotate along the 

shaft haft rotating speed and will go through the loading 

zone every cycle. Thus the peaks at BPFI (Ball Pass 

Frequency Inner), the combination of the BPFI with inner 

ring (shaft frequency) will be found in the frequency 

domain. Figures 5 (a) and (b) show the simulated vertical 

pedestal acceleration in time domain due to inner race 

defect with and without electromagnetic force. It is  

clear that the vibration amplitudes aggravate obviously 

under the electromagnetic force. The envelope spectrum 

(Hilbert transform) for the time domain in Fig. 5 (c) 

shows a frequency peak at 30 Hz, which is the rotating 

frequency. The theoretical inner race defect frequency 

BPFI calculated by Eq. (27) is 176.5 Hz which equals  

to the simulation value, indicating the model is accurate. 

It can be seen from the Fig. 5 (c) that for a small defect, 

the amplitude of defect characteristic frequency BPFI 

and the combination of the BPFI with inner ring  

rotating frequency are small in the frequency spectrum. 

However, there is clear increase for these peaks under 

the electromagnetic force. This may be attributed to  

the electromagnetic force property, which changes 

periodically due to the periodically changing of the air 

gap. In other words, when the rolling elements locate at 

the defected area, the rotor will vibrate, causing a varying 

air gap and leading to the same periodically varying 

electromagnetic force. Because the electromagnetic 

force varying frequency equals to the inner race defect 

characteristic frequency 𝑓BPFI , the 𝑓BPFI  characteristic 

signal will be amplified clearly. 
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Fig. 5. Simulated pedestal vertical vibration with bearing 

inner race defect, 𝑙 = 0.2mm, at 1800 rpm (30 Hz): (a) 

bearing without electromagnetic force, (b) bearing with 

electromagnetic force, and (c) frequency spectrum of the 

envelope between 0.6 and 1.2s. 

 

IV. EXPERIMENTAL INVESTIGATION 
The experimental test rig for this study is a rotor 

AMB system designed and built as a research platform 

at Nanjing University of Aeronautics and Astronautics, 

as shown in Fig. 6. The rotor was supported by two radial 

and two thrust AMBs. However, for this study, the 
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system is rearranged that the rotor is supported by rolling 

element bearings rather than AMBs and the AMBs  

are employed as the non-contact exciters to apply  

online electromagnetic force during the operation. One 

acceleration sensor is installed on the pedestal vertically 

to record the acceleration vibration data. 

 

Acceleration Sensor
 

 

Fig. 6. The test rig. 

 

 
 

Fig. 7. The damage process using electric discharge 

machine. 

 

Figure 7 shows inner race damage process using 

electric discharge machine. The width of this damage is 

around 0.2 mm. 

The experiment is performed at 1800 rpm (30 Hz) 

under radial AMB force with 1A bias current. Figure 8 

shows the experimental results. Figures 8 (a) and 8 (b) 

are the time domain acceleration signal with and without 

AMBs, respectively. Corresponding envelope frequency 

spectrum (Hilbert transform) comparisons for the faulty 

inner race bearing are shown in Fig. 8 (c) and Fig.  

8 (d). It can be seen that for an incipient defect, when 

electromagnetic force is not applied, the vibration 

amplitudes in the time domain, the peaks of 𝑓𝐵𝑃𝐹𝐼  and 

the combination of the BPFI with inner ring in frequency 

spectrum are small. However, there is clear increase  

in peaks at peaks of 𝑓𝐵𝑃𝐹𝐼  and the combination of the 

BPFI with inner ring under electromagnetic force. The 

experimental peak frequency of 𝑓𝐵𝑃𝐹𝐼  is 177.7 Hz, which 

almost coincides with the simulation results (176.5 Hz) 

and the theoretical calculation from Eq. (27). Both 

experimental and simulation results show an increase in 

the acceleration response as a result of the defect in the 

inner race.  

 

V. CONCLUSION 
The health condition of rolling element bearing has 

a great impact on the rotating machinery performances.  

In this paper, the dynamics of an inner race fault rolling 

element bearing with AMBs as force actuators is studied. 

We investigate a nonlinear bearing pedestal model with 

the inner race defect under the electromagnetic force and 

obtain the numerical simulation results. The results show 

that under the electromagnetic force generated from 

AMBs, the peaks of 𝑓BPFI  and the combination of the 

BPFI with inner ring in frequency spectrum for the inner 

race are amplified clearly, which is helpful for improving 

the diagnosis accuracy. In order to verify our theoretical 

calculation, an experiment is performed, which validate 

theoretical results.  

Since the single defect model with AMBs excitation 

is validated, we think this model may also be available 

for multiple defects. In the future, the multiple defects 

condition and sensitivity of this method will be 

investigated. 
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Fig. 8. Experimental pedestal vertical vibration with 

bearing inner race defect, 𝑙 = 0.2mm , at 1800 rpm  

(30 Hz): (a) bearing without electromagnetic force, (b) 

bearing with electromagnetic force, (c) the envelope 

frequency spectrum for a, and (d) the envelope frequency 

spectrum for b. 
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