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Abstract ─ This paper presents a design methodology for 

a concentric ring reflectarray using angular periodic 

structures. This paper also examines the coaxial wedge 

unit cell using the waveguide simulator method and 

contrasts it to the coaxial unit ring approach. The coaxial 

wedge unit cell approach is seen to offer a more efficient 

and more extendable means of simulation than the 

coaxial unit ring approach. 

 

Index Terms ─ Coaxial waveguide, frequency selective 

surface, periodic structures, reflectarray, waveguide, 

waveguide simulator method. 
 

I. INTRODUCTION 
The reflectarray, an antenna concept that combines 

design and analysis techniques from reflector antennas, 

periodic microwave structures and antenna array theory, 

has been around since at least the 1960s [1]. Early 

research was focused on waveguide elements. Planar 

elements such as spirals, discs, and patches were 

explored in the 1970s [2-4]. The first reflectarray patent 

was filed in the 1980s [5]. This early research was 

mainly conducted by private companies and the U.S. Air 

Force for military applications.    

In the 1990s microstrip reflectarray design 

concentrated on analyzing the phase behavior as a 

function of patch size through full wave analysis [6-9]. 

Essential reflectarray capacities were also investigated 

including: beamsteering [10], multiple polarizations 

[11], bandwidth improvement [12], and dual-frequency 

band operation [13]. Recent advancements have been 

focused on improving upon these capabilities and 

enhancing performance metrics. 

The reflectarray is a flat surface supporting many 

elements (usually microstrip patches) that are not 

connected with power division lines. This antenna has 

the benefit of being high gain and high efficiency like  

the reflector antenna or antenna array, while being flat 

(unlike the reflector) and not having an expensive, high-

loss beamformer (unlike the antenna array). Additionally, 

low-loss phase shifters can be incorporated to add an 

electronic beam steering capability (like the antenna 

array) [14-15]. The reflectarray can also be used as a 

subreflector, instead of a solid subreflector [16]. 

The reflectarray will usually have non-uniformly 

sized elements to produce a non-constant reflected 

phase. At a basic level, the design must provide a phase 

shift at each element such that the phase delay at that 

element will produce a uniform reflected phase after path 

length delay effects are taken into account. A plot of the 

phase delay or phase shift for a normal angle of incidence 

will show a series of peaks and nulls around the center 

of the reflectarray.  

One way to produce the phase delay that is needed 

is to alter the element size as a function of distance from 

the center of the array. To design a reflectarray of this 

type, full wave simulations of many element sizes are 

conducted and then the resulting resonant frequencies 

are mapped into a “backwards-S” phase reflection curve. 

This curve is used to fit the required phase delay for the 

reflectarray. A detailed design overview is presented in 

the literature [17-18]. 

Initial work on simulating periodic structures began 

in the 1960s using the waveguide simulator (WGS) 

method [19]. This method relied on exciting a radiating 

element in a waveguide. Because of the surrounding 

perfect electric conductor (PEC) walls, a method of 

images environment is formed which extends the 

element into an infinite array.  

The WGS method can be applied to any arbitrary 

shaped waveguide. In the following, the well-known 

cylindrical waveguide is used [20-21]. The waveguide 

simulator method was not applied to simulating 

structures of this sort until recently [22-24]. 

It is important to point out that advances have come 

for planar periodic structure simulation using Floquet 

conditions to account for the linear phase shifting  

along the elements in an infinite environment [25]. This 

approach is a staple of modern array simulations, but 

assumes a linear phase shifting of the frequency. Due  

to this fact, for curved or cylindrical designs where the 

phase shifting is not linear, the Floquet condition cannot 

be used and other methods must be explored. 

Another design consideration is the reflectarray  
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feed. Feed design uses efficiency plots and the chosen 

focal-to-diameter (F/D) ratio of the array. A detailed 

design overview can be found from classical reflector 

antenna theory [26-27]. 

Once the phase behavior of the reflectarray element 

is determined and the feed designed, the far field 

characteristics of the antenna can be approximated using 

array theory. An array geometry of particular interest is 

the concentric ring array geometry as it has circular 

periodicity. This array has the drawback of relatively 

high sidelobes in the uniform case; therefore an amplitude 

taper or some optimization procedure must be employed. 

Reference [28] presents techniques to mitigate the 

sidelobes by as much as 10dB. An actual design would 

need to employ these techniques as the uniform case 

would violate FCC 25.209 regulations for Ku-band. 

Other approaches and applications to this problem 

have been considered. A locally planar unit cell analysis 

can be conducted to get the reflectance and transmittance 

parameters and then these can be placed on the surface 

of a reflector for a diffraction analysis [29]. The square 

geometry of a patch can be warped into a quasi-

trapezoidal shape and analyzed [30-31]. Planar results 

can be simulated for a rectangular patch and then  

rotated tangentially around a curved surface using the 

characteristic basis method and spectral rotation 

approach [32-33]. 

 

II. MODEL SETUP 

A. Design geometry 

In this work, the WGS method is used with Ansys 

HFSS to analyze angular planar periodic unit cells. A 

resonant frequency of 6.15GHz (C-Band Uplink) is 

chosen for this application. In satellite communications, 

C-Band typically uses circular polarization. Furthermore, 

C-Band involves a lower frequency than Ka or Ku-Bands 

and therefore imposes an easier simulation. A copper 

clad dielectric substrate of Rogers RO3003 with a 

standard thickness of 1.52mm is used as the medium of 

design.  

The same geometry is used for both the unit ring and 

the unit cell, with the unit cell stacking rotationally about 

the center of the coax to form the unit ring. As an 

example, the angular width of the unit cell is set to 36° 

in order to make a full 360° unit ring with ten unit cells. 

The angular width of the patch is set to 24°. The inner 

and outer spacing above and below the patch is set  

to 5.9mm. The total length of the design is 0.43 

wavelengths. The geometries of the unit cell and unit 

ring can be seen in Fig. 1. 

The geometry is configured with a PEC back plate 

and is topped with a vacuum layer with a height of  

2 wavelengths. The top of the vacuum is set to be a 

modally driven port, making this design a one-port 

device. It can be found analytically or via HFSS that the 

coaxial unit ring has 9 propagating modes and the unit 

cell has 1. To determine the number of propagating 

modes in HFSS the user must set the maximum number 

of allowable modes, run a few passes of the adaptive 

mesh, and then inspect the propagation constants 

(gamma) to see which modes have positive real (lambda) 

and imaginary (epsilon) values.  
 

  
 

Fig. 1. (Left) Coaxial unit ring; (Right) coaxial wedge 

unit cell. 

 

B. Boundary conditions 

The boundary conditions for this design are depicted 

in Fig. 2. For the coaxial unit ring, the inner and outer 

coaxial walls are set to perfect magnetic conducting 

(PMC) boundary conditions to produce angularly 

polarized fields, as desired for this illustration. This type 

of polarization approximates illumination by a circularly 

polarized source. The boundaries can be also set to 

perfect electric conducting (PEC) boundary conditions 

to yield radially polarized fields (not depicted). 

 

 
 

Fig. 2. (Left) Principal propagating mode on a coaxial 

unit cell; (Right) principal propagating mode on a 

coaxial wedge unit ring. 

 

The coaxial unit cell (also depicted in Fig. 2) has the 

PMC boundary condition as well on the radial walls. 

Additionally, PEC boundary conditions are added to the 

side walls as a primitive periodic boundary condition. 

This can be thought about intuitively in two ways: 1) this 

will create images on these side walls to artificially 

extend the cell; 2) having the PEC on both side walls will 

make the fields want to jump from one to the other, 

creating the same fields in the cell as can be seen in the 

unit ring. 
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C. Meshing convergence 

The coaxial wedge unit cell has only one 

propagating mode, and thus the mesh convergence 

optimization scheme is simple. This simulation is run as 

a modal solution of a one port cavity in the HFSS 

software, so the mesh refinement process is based on a 

single S-Parameter value S11 (magnitude and phase). 

For accuracy, the mesh is considered to have converged 

when there is a maximum change of no greater than 

0.001 for the magnitude and 1 degree for the phase of 

S11. Additionally, a minimum number of 8 passes is 

required to ensure an adequate initial mesh is generated 

and that the convergence doesn’t preemptively exit. 

For the coaxial unit ring, the convergence criteria 

must be a function of all of the diagonal entries of the  

S-Parameter matrix, i.e., the S11 values for all 9 

propagating modes of the coaxial cavity. For the 

principal TEM mode, which is the mode that will be 

looked at for the reflected phase delay, the same 

convergence limit is set: a maximum change of no 

greater than 0.001 for the magnitude and 1 degree for  

the phase. For the other 8 modes the criteria require  

a maximum change of no greater than 0.01 for the 

magnitude and do not depend on phase. 

For full convergence, 26 adaptive passes are needed 

for the coaxial unit ring, but in order to reduce simulation 

time, a maximum cut-off of 24 passes was used. This 

corresponds to a delta phase convergence of 1.28° instead 

of the desired 1°. Table #1 compares the performance of 

the unit cell and unit ring approaches. The unit ring 

results could be improved by allowing the adaptive 

process to go to 26 passes to match the unit cell criteria.  
 

D. The PEC control case 

An additional model must be created that is identical 

to those previously discussed, but with the radiating 

element replaced with a PEC block. In this way, a 

perfectly linear reflected phase shift can be obtained to 

compare to the reflected phase shift of the radiating 

element. The total reflected phase plot – which can be 

thought of as a “backwards S” curve (see Fig. 3) – can 

be found from subtracting the reflected phase of the PEC 

control case from the reflected phase of the radiating 

element. 

 

III. SIMULATION RESULTS 
Table 1 summarizes the findings and Fig. 3 presents 

the reflected phase plot produced by the two approaches. 

As might be expected, the unit cell is a much more 

computationally efficient way of calculating the reflected 

phase of the radiating patch. One important observation 

to note is that as the ring number increases the b/a ratio 

(where a is the inner and b is the outer radius of the 

coaxial unit cell) approaches unity, the physical area of 

the ring increases, and the number of propagating modes 

will approach infinity. Thus, another important quality 

of the unit cell model is that it will involve the same 

number of propagating modes as its location changes and 

the design is much easier to simulate for large radial 

locations.  

 

Table 1: Mesh information for the coaxial wedge unit 

cell and the coaxial unit ring approach (2nd ring) 

Mesh Statistics Coaxial Wedge 

Unit Cell 

Coaxial Unit 

Ring 

Total mesh size 67,091 427,054 

Simulation time 20 min 36 hours 

Number of 

adaptive passes 
19 24 

Number of modes 1 9 

Operational freq. 

band (GHz) {±90°} 
5.870-6.309 5.862-6.299 

Resonant phase 

frequency (GHz) 
6.114 6.106 

Bandwidth 7.15% 7.15% 

Phase difference at 

6.11 GHz 
4.46° 

 

 
 

Fig. 3. Reflected phase curve for the two methods. 

 

IV. REFLECTARRAY APPLICATION 
As an example, consider a reflectarray for satellite 

communications in the commercial Ka-Band for an uplink 

frequency of 29 to 30 GHz and circular polarization. This 

antenna will be considered as a very small aperture 

terminal (VSAT) as it will have a total size of ~40cm. 

For this example, we design a reflectarray with a 

concentric ring topology. The design uses 47 rings, a 

spacing of 0.43 wavelengths between the rings, and 5α 

elements per ring where α is the integer ring index. The 

radius of the reflectarray is 20 wavelengths, for a total of 

5,640 elements. The geometry of the reflectarray is shown 

in Fig. 4. This design has the minimum beamwidth 

required to meet the FCC 25.209 envelope, with a  
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gain of 42dB at 29.5GHz. A design with the unit cell 

parameters is presented in Table #2. 
 

 
 

Fig. 4. Reflectarray geometry. 

 

Table 2: Design table for the Ka-band unit cell 

Design Table 

Ka-Band Unit cell 

Value 

Design frequency 29.5GHz 

Substrate material Roger RO3003 

Substrate thickness 1.52mm 

Radial (inner and outer) 

spacing 
265μm 

Angular spacing  

(cell, patch) 
(36°, 28°) 

Convergence criteria 

(mag, phase) 
(0.001, 2.5°), 18 Passes 

Resonant phase 

frequency (GHz) 
29.54GHz 

Bandwidth 1.42% 

 

As discussed in the introduction, the phase shift 𝜓𝑖  

at an element must ensure that the phase delay at that 

element will produce a uniform reflected phase after path 

length delay effects are taken into account. This is 

equivalent to the constraint [36]: 

k0(𝑅𝑖 − �̅�𝑖 ∙ �̂�𝑜) − 𝜓𝑖 = 2𝜋𝑁,                  (1) 

where k0 is the propagation constant, N is an integer, Ri 

is the distance to a patch, r̂o is the unit vector of the 

reflected ray, and r̅i represents the geometry of the array. 

A visual representation – from the geometry of this 

example – is depicted in Fig. 5. 

In order to produce the phase shift required at an 

element by Fig. 5, the resonant phase as a function of 

patch size is needed. Notice that when the patch length 

is grown or shrunk, the resonant frequency will grow or 

shrink based on the trend depicted in Fig. 6, where patch 

length is defined as the radial length of the PEC patch 

within the unit cell. For frequency 29.5 GHz, and the set 

of resonant phase curves in Fig. 6, another backwards-S 

type curve can be produced for use as a design equation, 

as depicted in Fig. 7. 
 

 
 

Fig. 5. Required element phase delay to produce a 

collimated beam using Equation #1.  
 

 
 

Fig. 6. Individual reflected phase plots for varying length 

elements. 

 

After the resonant phase characteristics are 

determined and applied to the phase shift plot to produce 

a uniform reflected phase, the feed must be designed. 

The feed can be designed using simple reflector 

equations to find the optimal quality factor, where the 

optimal Q-factor is the maximum of the total aperture 

efficiency curve when combining spillover and 

illumination efficiencies. For this example, the F/D ratio 

was fixed at 1. The 3dB Beamwidth of the feed can be 

found using the following equations: 

𝜃𝑒 = tan−1 (
1

2𝐹/𝐷
) → 𝑢 = cos(𝜃𝑒),            (2) 

𝜂𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟 = 1 − 𝑢2(𝑞+1),                     (3) 
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𝜂𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =
4(𝑞+1)(1−𝑢𝑞)2

𝑞2𝜂𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟 tan(𝜃𝑒)2,              (4) 

𝜂𝑡𝑜𝑡𝑎𝑙 = 𝜂𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟𝜂𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛,                (5) 

𝑞𝑚𝑎𝑥 = max(𝜂𝑡𝑜𝑡𝑎𝑙),                       (6) 

⇒ 𝐵𝑊3𝑑𝐵(𝐹𝑒𝑒𝑑) = 2 cos−1 (exp {
log(

1

2
)

2𝑞𝑚𝑎𝑥
}),      (7) 

𝑤𝑖𝑡ℎ 𝐵𝑊3𝑑𝐵(𝐹𝑒𝑒𝑑) ≈ 30° (𝑓𝑜𝑟
𝐹

𝐷
= 1),         (8) 

These equations produce the plots in Fig. 8, and the 

optimal Q-factor can be found as the maximum of the 

total aperture efficiency curve.  

 

 
 

Fig. 7. Resonant phase plot for 12.4GHz versus element 

lengths. 
 

 
 

Fig. 8. Reflectarray efficiency plot. 

 

Now that both the array and the feed are designed, 

the far-field pattern can be found using array theory with 

the feed and element patterns being applied as amplitude 

tapers (shown in Fig. 9). Assuming all elements are 

designed such that the phase delay requirement is met, 

the far-field plot will be that given in Fig. 10. The initial 

antenna pattern in Fig. 10 has a few sidelobes close  

to the main beam that violate regulatory requirements, 

but these can be mitigated using array optimization as 

described in [28]. 

 

 
 

Fig. 9. Amplitude taper plot. 

 

 
 

Fig. 10. Far-field pattern of the reflectarray antenna. 

 

V. CONCLUSION 
A method of designing a concentric ring reflectarray 

is presented. EM field simulation is used to determine 

the phase profiles of the unit cell. It is found that the 

coaxial wedge unit cell gives nearly identical results,  

in terms of bandwidth and resonant frequency of the 

reflected phase curve, compared to the coaxial unit  

ring. The coaxial wedge unit cell requires an order of 

magnitude smaller simulation time. A preliminary 

concentric-ring reflectarray design is presented. 
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APPENDIX I. ANALYTICAL MODE 

PREDICTION 
Cylindrical waveguide geometries have a wave 

function (the solution to the Helmholtz equation) of the 

form: 

 𝜓 = 𝐵𝑛(𝑘𝜌𝜌)ℎ(𝑛𝜙)𝑒±𝑗𝑘𝑧𝑧, (9) 

where   Bn(kρρ)~Jn(kρρ),   Nn(kρρ),  Hn
(1)

(kρρ),  Hn
(2)

 

(kρρ) and  h(nϕ)~ sin(nϕ) , cos(nϕ) , e±jnϕ. 

A. Coaxial waveguide modes 

The modes are commonly known for the coaxial 

waveguide and were derived in the 1940s. 
 

 
 

Fig. 11. Cross section of the coaxial waveguide (Left) 

and coaxial wedge waveguide (Right). 

 

For the coaxial waveguide depicted in Fig. 11, by 

setting the electric field to zero at ρ = a and b, the 

propagation constant can be derived from the roots 𝑘𝜌 of 

the equation: 

Yn(ka)Jn(kb) − Jn(ka)Yn(kb) = 0,            (10) 

for n = 0,1,2, … 

Similarly, for TE modes: 

Y′
n(ka)J′

n
(kb) − J′

n
(ka)Y′

n(kb) = 0,          (11) 

for n = 0,1,2, … 

The coaxial wedge waveguide is similar to the 

coaxial waveguide, but there are additional boundary 

conditions on the angular PEC walls. These require the 

electric field at φ = 0 and φ0 to vanish. From these 

boundary conditions, the propagation constants can be 

derived from the roots 𝑘𝜌 of the equation: 

Yn(ka)Jn(kb) − Jn(ka)Yn(kb) = 0,           (12) 

for n =
kπ

ϕo
 where k = 1,2,3 …  

Similarly, for TE modes: 

Y′
n(ka)J′

n
(kb) − J′

n
(ka)Y′

n(kb) = 0,        (13) 

for n =
kπ

ϕo
 where k = 0,1,2,3 …   

Since n is larger in the coaxial wedge waveguide than in 

the coaxial waveguide, the coaxial wedge waveguide 

will have fewer modes depending on the value of 𝜙𝑜. We 

see this in practice – as in Table 1. Additional details on 

cylindrical wave functions can be found in [33]. 
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