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Abstract ─ A 94-GHz dual-polarization low-sidelobe-

level slot array antenna is proposed. A 2x2-slot cavity-

backed subarray is adopted as the basic unit of the array. 

A high-isolation orthogonal-mode transducer (OMT) 

with a simple structure is used to excite the dual-

polarization subarray. The realization of a low sidelobe 

level depends on the amplitude-weighted waveguide 

feed network. A novel unequal power dividing ratio but 

equal phase (UPEP) single-ridged waveguide divider is 

presented for the construction of the vertical polarization 

(VP) array feed network. A 16x16-slot low-sidelobe-

level dual-polarization array antenna is fabricated. The 

machining difficulties of the W-band array are reduced 

by using simpler structures. The measured results show 

that the impedance bandwidth is greater than 7.3 GHz, 

while the first sidelobe levels are lower than -20.1 dB for 

both polarization arrays within the operating bandwidth. 

The measured gain is higher than 30.9 dBi for the two 

polarization arrays with an antenna efficiency better than 

64% . 

 

Index Terms ─ Dual-polarization, low sidelobe level, 

slot array antenna, W-band. 

 

I. INTRODUCTION 
Fully polarimetric radar has advantages in anti-

interference properties and has received increasing 

attention in recent years. The dual-polarization antenna 

is the key part of achieving the polarization agility of a 

fully polarimetric radar system [1]. The reported dual-

polarization reflector antenna and lens antenna have a 

high gain but suffer from a high profile [2-3]. 

Most reported dual-polarization planar antennas are 

based on dielectric substrates because of their low profile 

and low cost [4-9]. Microstrip patch antennas were used 

as the dual-polarization radiating elements in [5-8]. High 

isolation between the two polarization arrays has been 

achieved by multilayer feed networks; however, these 

antennas have a low radiation efficiency due to the large 

loss of the microstrip feed network. In [8-9], a substrate-

integrated waveguide feed network was used, and the 

antenna efficiency increased but remained at a low  

level because the dielectric loss could not be ignored, 

especially in the millimeter-wave band. 

Waveguide slot antennas employ a low-loss feed 

network, leading to an easier realization of a low 

sidelobe level, which has been widely used in the milli-

meter wave band [10-12]. However, these slot arrays are 

actually series-fed, which results in a narrow bandwidth 

due to the long-line effect. 

The basic units of the cavity-backed slot antennas in 

[13-17] use the resonance mode in the cavity to feed the 

slots instead of a conventional feed network, which 

results in lower feeding loss and wider bandwidth. In 

addition, corporate feed networks are adopted in cavity-

backed slot arrays, resulting in high-gain and wideband 

performance. Due to the good performance, a large 

number of cavity-backed slot array antennas with 

different radiating elements, different transmission lines 

and different frequencies have been studied and reported 

[13-21]. Few of these studies have mentioned low-

sidelobe-level design in a dual-polarization array, 

however, for radar systems, low-sidelobe-level antennas 

can improve the anti-jamming ability of the system. 

The goal of this paper is to present a method to 

design the wideband high-gain dual-polarization slot 

array antenna with a low-sidelobe-level design in the  

W-band. First, we introduce the basic unit of the dual-

polarization array and analyze the working mechanism 

of the orthogonal-polarization feeding structure. Next, 

we introduce the design of the unequal power dividing 

ratio but equal phase single-ridge waveguide divider in 

detail. Finally, a 16x16-slot dual-polarization array with 

a low sidelobe level is fabricated and measured to verify 

the design method. 

 

II. ANTENNA DESIGN 
The total structure of the proposed W-band dual-
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polarization 16x16-slot cavity-backed array antenna is 

shown in Fig. 1. The antenna consists of six metal layers. 

The upper two layers are the radiating part of the  

array, and the third and fifth layers are the 1-to-64-way 

amplitude-weighted feed networks of the vertical 

polarization and horizontal polarization arrays. The 

power-weighted feed-networks are composed of the 

UPEP rectangular waveguide dividers and UPEP single-

ridge waveguide dividers. The isolation bars and 

coupling windows are in the fourth layer, and they are 

the key to realizing high isolation between the feed 

networks of the two polarization arrays. The sixth layer 

is the backboard, and two WR-10 standard waveguides 

with an FUGP-385 flange are used as the feeding ports.  

 

5. 1-to-64 V-pol. 
feed-network

3. 1-to-64 H-pol. 
feed-network

6. Back-board

2. Step cavities

1. Radiating slots and 
upper cavities

4. Isolation bars and 
coupling windows

y

x

z

 
 

Fig. 1. Configuration of the dual-polarization array. 

 

A. The dual-polarization cavity-backed slot subarray  

As shown in Fig. 2, the basic unit of the array is a 

cavity-backed 2x2-slot subarray. Circular radiating slots 

and square cavities with large fillets are used instead of 

the narrow slots and irregularly shaped cavities in [13] to 

reduce the machining difficulties in the W-band. The 

radiating slots and the upper cavity have a rotationally 

symmetrical structure that can radiate uniformly for  

both polarizations. The radiating part is fed by a square 

waveguide, and a step cavity is adopted to improve  

the impedance bandwidth of the feed waveguide. The 

horizontal-polarization (HP) electromagnetic (EM) wave 

is fed from an E-plane rectangular waveguide through 

the z-direction coupling window etched on the sidewall 

of the square waveguide, and the VP EM wave is fed  

by a single-ridged waveguide through the y-direction 

coupling window on the bottom of the square waveguide. 

Upper cavity

Step cavity

Square waveguide
V-pol. Port

y

x

z

Coupling 

windows

Isolation bar H-pol. Port

 
 

Fig. 2. Configuration of the basic unit in the array. 

 

As shown in Fig. 3, the isolation bar can cut off the 

HP EM wave, while the z-direction coupling slot can cut 

off the VP EM wave, the isolation between the two ports 

can be estimated by formula (1): 

 
1020log ,L

sI e  (1) 

where α is the attenuation constant of TE10 mode, L is 

the sum of hv, hh and t. As depicted in Fig. 4, the isolation 

between HP and VP ports is lower than -45dB among 

88GHz~100GHz. Compared with the feeding structure 

in [21], the orthogonal-mode transducer adopted in our 

work has a more compact structure and a higher isolation 

so that the two polarization feed-networks can be 

designed independently. 
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(a) Electric field distribution in the OMT (H-pol.) 
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(b) Electric field distribution in the OMT (V-pol.) 

 

Fig. 3. Working mechanism of the OMT. 

 

88 90 92 94 96 98 100
-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

S
-p

a
ra

m
et

er
s 

[d
B

]

Frequency [GHz]

 V-pol.|S
11

|

 H-pol.|S
11

|

 Isolation

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

 V-pol. Gain

 H-pol. Gain

G
a

in
 [

d
B

i]

 
 

Fig. 4. Simulated performance of the subarray. 

 

The EM simulation software Ansoft HFSS is used 

to analyze the performance of the antenna. The S-

parameters and gain of the basic unit are depicted in  

Fig. 4, and the radiation patterns of the basic unit are 

exhibited in Fig. 5. The reflection coefficients of the VP 

and HP units are lower than -10 dB over the frequency 

range of 88.5 GHz~96.8 GHz. The simulated gain  

is higher than 14 dBi, and the cross-polarization 

discrimination (XPD) is lower than -39 dB in both planes 

for the two polarization units. 

 

 
 

Fig. 5. Radiation pattern of the subarray (94GHz). 

B. Design of the UPEP waveguide dividers  

When using the 2x2-slot unit to build a wideband 

large-scale array, the low-sidelobe-level performance of 

the array antenna needs to be realized by an amplitude-

weighted corporate feed network. 

The UPEP waveguide divider is the basic unit of  

the amplitude-weighted feed network in rectangular 

waveguide (RWG). The characteristic impedance of Z0 

and phase constant β of the TE10 mode in a rectangular 

WG are listed in (2) and (3):  
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where a and b are the broad wall width and narrow width 

of an RWG. The realization of the UPEP RWG divider 

is through tuning the narrow wall width of RWG. This 

method can be used to build the VP amplitude-weighted 

feed network. However, a UPEP single-ridge waveguide 

divider should also be designed to build the HP 

amplitude-weighted feed network. 

Unlike the RWG, the electric field and magnetic 

field distributions in an SRWG are more complicated. At 

present, there are few studies on a UPEP single-ridge 

waveguide divider. 

The key to realizing a UPEP divider is to find a 

waveguide parameter that affects the characteristic 

impedance (Ze) of the waveguide but has a small effect 

on the guide wavelength (λg). Figure 6 shows curves of 

the characteristic impedance and guide wavelength of a 

single-ridge waveguide with different values of the ridge 

width a2; for the SRWG, when the ridge height b2 is close 

to the height of the waveguide b2, the ridge width a2  

is proportional to the characteristic impedance Ze but 

independent of the guide wavelength λg. 
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Fig. 6. Simulated results of a single-ridge waveguide. 
 

Based on this discovery, we proposed the UPEP 

single-ridge waveguide divider, which is shown in Fig. 

7. A power splitting SRWG section is added to both 
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output WGs. The ridge heights of the two SRWG 

sections are close to the height of the SRWG (b2≈b1). By 

adjusting the ridge width of the two SRWG sections, an 

unequal power dividing ratio but equal phase can be 

achieved. An impedance matching section is placed at 

the input port to broaden the bandwidth. The impedance 

of this section can be calculated by formula (4): 

 
1 0 2 3 2 3( ).Z Z Z Z Z Z   (4) 
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Fig. 7. The proposed UPEP single-ridge waveguide 

divider. 

 

Figure 8 shows the performance of the designed 

UPEP single-ridge waveguide divider. The power 

dividing ratio is 3.5 dB, and the absolute value of the 

phase deviations is less than 5 degrees between the two 

output ports, while the reflection coefficient is less than 

-18 dB in the frequency range of 88 GHz~100 GHz.  
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Fig. 8.  S-parameters of the proposed UPEP divider.  

 

C. Design of the amplitude-weighted feed-network 

To realize the low sidelobe level of a large-scale 

array, we used the 2x2-slot dual-polarization subarray  

to build a 16x16-slot array. Two kinds of 1-to-64-way 

amplitude-weighted waveguide feed networks are 

designed in this section. 

Based on the proposed UPEP single-ridge 

waveguide divider, a 1-to-64-way amplitude-weighted 

corporate feed network is built for the HP array. The 

amplitude-weighted feed network for the VP array 

consists of the UPEP rectangular waveguide divider 

proposed in previous work. Figure 9 shows the 

configuration of the H feed networks. A 25 dB Taylor 

synthesis is used to obtain the normalized amplitude 

coefficient of each output port in the two feed-networks. 
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(a) Configuration of the VP array feed-network 
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(b) Configuration of the HP array feed-network 

 

Fig. 9. The designed amplitude-weighted feed-networks.  

 

Three UPEP power dividers with power splitting 

ratios of 4.25 dB, 2.9 dB and 1.47 dB are required for 

each feed network. Their corresponding positions are 

also shown in Fig. 9.  
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The feed ports of the array are two WR-10 standard 

waveguides with an FUGP-385 flange. As shown in Fig. 

10, a vertical transition from the single-ridge waveguide 

to the WR10 standard waveguide is introduced in  

the feed networks. The S-parameters of the vertical 

transition are shown in Fig. 11. The results indicate that 

the transition structure has a reflection coefficient of less 

than -22 dB in the frequency range of 88 to 100 GHz,  

a relative bandwidth of approximately 25.6%, and an 

insertion loss of less than 0.05 dB in the same frequency 

range. 
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Fig. 10. Vertical transition from SRWG to RWG. 
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Fig. 11. Simulated performance of the vertical transition. 

 

The simulated performance of the designed VP and 

HP amplitude-weighted feed networks are shown in Fig. 

12. The absolute values of the phase deviation are less 

than 8 degrees among the 64 ports, and the absolute values 

of the amplitude differences are less than 0.25 dB in the 

frequency range of 89.2 GHz ~ 98.2 GHz. Moreover, the 

reflection coefficients of the HP and VP input ports are 

less than -10 dB from 88.5 GHz to 97.5 GHz. 

 

 
(a) Performance of the HP array feed-network 

 
(b) Performance of the VP array feed-network 

 

Fig. 12. Simulated results of the feed-networks. 

 

III. MEASUREMENT AND RESULTS 
The designed dual-polarization 16x16-slot cavity-

backed array antenna consists of six aluminum plates and 

is shown in Fig. 1. These aluminum plates are machined 

by milling and bonded by a vacuum brazing process. The 

smallest milling cutter used during machining is 0.3 mm 

in diameter. The surface roughness inside the waveguide 

cavity after processing is Ra1.6. The manufacturing 

tolerances of the array antenna are analyzed by the HFSS 

software. Figure 13 shows the prototype of the proposed 

antenna. 

The average thickness of each layer of solder after 

bonding is less than 0.02 mm, which is within an 

acceptable range. The reflection coefficient and isolation 

of the two polarization input ports of the array antenna 

were measured by the R&S ZVA-Z110 vector network 

analyzer. The results are shown in Fig. 14. The reflection 

coefficients of the HP and VP ports are less than -10 dB 

in the frequency range of 89.2GHz~ 96.5GHz, and the 

relative bandwidth is approximately 7.8%. The isolation 

between the two polarization feed ports is better than  

45 dB in 88 GHz ~100 GHz.  
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Fig. 13. Prototype of the fabricated array antenna. 
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Fig. 14. Measured S-parameters of the proposed array. 

 

The radiation performance of the dual-polarization 

array was measured by a W-band far-field antenna 

testing system in an anechoic chamber. The antenna 

measurement environment is shown in Fig. 15. 

 

 
 

Fig. 15. Antenna measurement environment. 

 

 

Figure 16 shows the measured and simulated gains 

of the antenna. A gain curve considering the metal loss 

and surface roughness is also added to the figure for a 

comparison. The measured gain for the VP array is 

higher than 31 dBi, and the measured gain for the HP 

array is higher than 30.9 dBi from 90 GHz to 96 GHz. 

The measured gain is approximately 0.6 dB lower than 

the simulated gain, which is caused by errors in the 

processing and measurement. The measured efficiency 

of the two polarization arrays is higher than 64% over 

the entire working band. 

 

 
 

Fig. 16. Measured gain of the proposed array. 

 

A comparison between the measured and simulated 

radiation patterns is shown in Fig. 17. The measured 

sidelobe levels for the VP and HP arrays are lower than 

-21 dB and -20.1 dB in both planes, respectively. The 

XPDs for both polarization arrays are lower than -35 dB 

in both planes. The measured and simulated results are 

highly consistent, which verifies the validity of the 

design method. 

 

 
(a) Radiation pattern of the VP array (94GHz) 
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(b) Radiation pattern of  the HP array (94GHz) 

 

Fig. 17. Measured radiation pattern of the proposed 

array. 

 

Table 1 presents a comparison of the antenna 

presented in references and our work. The performance 

comparison includes the center frequency, realized gain, 

impedance bandwidth, sidelobe-level, cross-polarization 

discrimination, antenna efficiency, and fabrication 

difficulties. The results indicate that the antenna in our 

work has the lowest sidelobe level with wideband and 

high-gain performance characteristics. 

 

Table 1:Performance comparison of the reported planar 

dual-polarization antenna and our work 

Ref. [13] [19] [20] [21] [4] 
Our 

Work 

Freq. 

[GHz] 
60 60 60 60 94 94 

Gain 

[dB] 
32.2 22.3 12.5 16.5 13.3 31.2 

BW. 8% 17% 22% 15% 7% 7.8% 

SLL. 

[dB] 
-13 -12.3 -10 -13 -10 -20.1 

XPD. 

[dB] 
<-25 <-20 <-10 <-30 <-9 <-35 

Effc. 80% 72% 70% 65% 50% 64% 

Fabr. 

Diffic. 
Medium Low Low High Low Medium 

 

IV. CONCLUSION 
A 94-GHz dual-polarization low-sidelobe-level 

16x16-slot cavity-backed array antenna is proposed. A 

high-isolation orthogonal mode transducer with a simple 

structure is used to excite the 2x2-circular-slot cavity-

backed subarray. A new UPEP single-ridge waveguide 

divider is proposed for the construction of the amplitude-

weighted corporate feed network. The measured first 

sidelobe levels are lower than -20.1 dB for both arrays 

from 90 GHz to 96 GHz. The measured results indicate 

that the fabricated W-band array antenna has wideband 

and high gain performance characteristics, which 

commendably satisfies the requirements of the W-band 

fully polarimetric radar system. 
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