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Abstract ─ An improved Gaussian-process-based 

technique is described for modelling both on-axis  

and off-axis monostatic RCS magnitude responses of 

shoulder-launched missiles. The RCS responses are 

complicated, oscillatory, quasi-periodic functions of 

frequency, with the oscillation periods being related to 

the spacings of the scatterers comprising the missiles. 

The updated modelling approach employs a spectral-

mixture covariance function, whose components explicitly 

include distinct oscillations. The proposed technique is 

evaluated by means of two example missiles. For the  

six rotations considered, average predictive normalised 

RMSE ranged from 0.34% to 0.87% and from 0.95% to 

1.53% for the two missiles respectively. 

 

Index Terms ─ Gaussian processes, modelling, radar 

cross-section. 
 

I. INTRODUCTION 
A radar system has little or no influence over  

the radar cross-section (RCS) of a target [1, 2], making 

RCS the driving factor behind a variety of radar  

design decisions (e.g., [2, 3]). RCS magnitude strongly 

affects radar performance via SNR, and influences 

countermeasure performance via the jammer-to-signal 

ratio (JSR) [2]. 

The majority of radar targets have dimensions  

which are significantly larger than a wavelength, so RCS 

simulations normally require vast quantities of memory 

and take a long time, even when high-frequency 

techniques such as physical optics (PO) are used. 

Unfortunately, the fact that radar targets are so much 

larger than the wavelength means that the RCS 

magnitude varies rapidly with frequency and rotation  

[1], so RCS must be determined at a large number of 

frequencies and rotations. Accurately modelling RCS 

magnitude as a function of frequency would reduce  

the number of frequency points at which RCS must  

be determined (e.g., via costly simulations), thereby 

reducing the time required to reliably obtain platform 

RCS.  

Despite the clear value of RCS magnitude  

modelling, it has received surprisingly little attention in 

the literature (studies concerned with modelling RCS 

magnitude as a function of frequency include [4-10]), 

and in most cases, the targets considered either have very 

specific attributes (e.g., strong resonances), have simpler 

responses than the missiles considered here, or only 

consider angular interpolation. There is a relatively large 

body of literature which attempts to extract accurate 

models of targets from RCS responses (e.g., [11-14]), but 

the emphasis in these studies is on target characterisation 

rather than RCS modelling. There is thus a need to 

consider the modelling of RCS responses of realistic 

targets, like missiles. 

It has recently been demonstrated that Gaussian 

process (GP) regression [15] can be used to create 

accurate models of monostatic RCS magnitude 

responses of shoulder-launched missiles [10]. Integral  

to the models was the use of a specially constructed 

composite covariance function formed by taking the 

product of standard squared-exponential and periodic 

covariance functions [15]. It was shown that GP 

regression outperformed support vector regression,  

a GTD-based approximation technique, and spline 

interpolation in modelling the highly oscillatory RCS 

magnitude responses of Stinger and Strela missile 

models. GP regression has also been used in conjunction 

with a Bayesian committee machine to model RCS 

responses as a function of object shape [16], further 

demonstrating the value of the GP approach to RCS 

modelling. However, these investigations did not consider 

RCS frequency response [16]. Furthermore, similar to 

[10], only frontal-incidence (on-axis) RCS responses 

were considered.  

In the present study, the technique described in [10] 

is extended to account for monostatic RCS responses 

involving an additional missile type, as well as different 

angles of incidence (i.e., off-axis). These challenging 

additional test cases expose limitations of the composite 

SE×PER covariance function used previously [10].  

The structure of the frequency response of the RCS 

magnitude suggests that using a spectral-mixture 

covariance function [17] (not previously used for 
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electromagnetic modelling) will produce better results, 

and experimental results confirm that this is indeed the 

case. 

 

II. GAUSSIAN PROCESS MODELLING 
The goal is to model the response of the RCS 

magnitude as a function of frequency, i.e., a one-

dimensional latent function that is assumed to be noise-

free.  

Consider a training set {( , ) | 1, ,  
i i

x g i n

consisting of observations of the latent function, where 

the inputs xi and outputs (targets) gi are frequency  

and RCS magnitude respectively. In order to make 

predictions at new (test) inputs 
* *

{ | 1, , }


 
j

x j n , the 

first step is to define a jointly Gaussian prior distribution 

over the n training outputs (vector g) and the 
*

n  

unknown test outputs (vector 
*

g ) [15]:  
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where  ,Vu  denotes a multivariate normal 

distribution with mean vector u and covariance matrix  

V, while x and 
*

x  are vectors containing the training  

and test inputs respectively. The shape of the prior is 

determined by the covariance matrix with sub-matrices 

 K , where for example,  ,


K x x  is an 


n n

covariance matrix holding the covariances between all 

pairs of training and test outputs, and the remaining K ( )⋅
are similarly defined. 

Elements of the covariance matrices in (1) are given 

by a covariance function k(x, x'), which gives the 

covariance between the values of the process at x  

and x'. A popular standard covariance function which  

is frequently used for antenna modelling [18] is the 

squared-exponential (SE) covariance function: 

  
2

2

SE
,  exp 0.5 ,
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where 
2

f
  is a parameter that governs the variance of  

the process and τ is a positive length-scale parameter 

[15]. To make predictions, it is required that a posterior 

distribution be constructed by conditioning the test 

outputs g
∗
 on the known training outputs g; the posterior 

is given by  | , , ~ ,
 

g x x g m  [15]. The mean m 

of the posterior is given by,  

    
1

, , ,



 K Km x x x x g  (3) 

and contains the most likely RCS magnitudes at the test 

frequencies in 
*

x . Alternatively, the prediction at a 

point 
*

x  may be expressed in terms of a sum of weighted  

covariance functions placed at the training points [15]:  
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where vector  
1

,


 K x x g , and 
*

( , )
i

k x x  is the 

covariance function situated at training point xi. The 

hyperparameters of the covariance function (e.g., 
2


f
 

and τ in (4)) are optimised during training, which involves 

minimising the negative log marginal likelihood with 

respect to the hyperparameters [15, eq. (2.29)]. 

Used by itself, the above-mentioned SE covariance 

function is incapable of accurately modelling oscillatory 

responses of shoulder-launched missiles such as those 

shown below in Figs. 2 and 3. Previously [10], this 

difficulty was addressed by combining the SE covariance 

function, kSE, with the standard periodic covariance 

function, kPER, given by [15]: 
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where the intervals between repetitions are determined 

by λ, while θ is a length-scale parameter. The resulting 

composite covariance function is given by [10]: 
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which has four hyperparameters, 
f
 τ, θ, and λ. While 

the results obtained using kSEPER for models of the Strela 

and Stinger missiles for front-on incidence were good 

[10], it is demonstrated in Section III below that 

predictive performance was significantly poorer when 

extended to rotated versions of the Strela as well as an 

Igla missile (front-on incidence and rotations). 

The RCS responses of shoulder-launched missiles 

are intricate, oscillatory, quasi-periodic functions of 

frequency. In physics-based approaches to calculating 

RCS response approximations, the target is often 

modeled as a collection of point scatterers placed at 

defining structural positions of the target [1]. This 

approach leads to a model comprising sinusoidal 

oscillations whose periods are related to the spacings of 

the scatterers (see (1) below). Broadly speaking, the 

notion that multiple periods need to be taken into account 

suggests that a covariance function that explicitly allows 

multiple distinct sinusoidal oscillations might be a better 

modelling tool than kSEPER for RCS responses such as 

those shown in Fig. 3.  

The spectral mixture (SM) covariance function, kSM 

[17] is such a covariance function. For one-dimensional 

inputs, kSM can be expressed as [17]: 
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where Q is the number of spectral mixtures, and the 

hyperparameters 
q

w , 
q
, and 

2


q
 are respectively the 

weight, mean, and variance of the Gaussians comprising 

the qth mixture. This nomenclature arises as Bochner’s 

theorem allows kSM to be interpreted as the inverse 

Fourier transform of the sum of Q scale-location 

Gaussian spectral density mixtures, with each mixture 

containing two Gaussians centered symmetrically about 

the spectral origin [15, 17]. By comparison, the SE 

covariance function is the inverse Fourier transform of 

only a single Gaussian spectral density centered at the 

origin. The number of hyperparameters to be optimised 

for kSM is 3Q, compared to four hyperparameters for 

kSEPER used in [10].  

In Section III, it is demonstrated that GP regression 

using kSM gives very accurate results, significantly 

improving on those obtained using GP regression with 

kSEPER. It was previously demonstrated that the point-

scatterer concept in the form of a GTD-based approach 

was significantly less accurate than GP regression 

employing kSEPER in modelling the front-on RCS 

responses of missiles [10]. Tables 1 and 2 below show 

that kSM in turn outperformed kSEPER for all rotations 

(including front-on incidence) of the Strela and Igla 

missiles considered. The apparent accuracy difference 

(kSM versus point-scatterer concept) is perhaps surprising 

in light of the fact that both kSM and the point-scatterer 

model make use of a number of sinusoidal terms with 

differing periods. It is therefore informative to compare 

the GP regression using kSM in (3) after training to the 

point-scatterer view. 

Under the latter approach, the reflections from the 

scatterers are combined with phase shifts which depend 

on the distances between the scatterers from the 

perspective of a radar, giving an RCS magnitude of, 

 

2

1
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 



  i i
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j j d

i
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where S is the number of scatterers, each with magnitude 

ai, phase φi, and position di, with β=2πf/c being the 

propagation phase constant where f is the frequency and 

c is the propagation velocity. It can be shown that the 

RHS of (9) reduces to: 

  
1 2 3

1 1

RCS cos ,[ ]
 
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S S

ij ij ij i j

i j
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where knij, n=1, 2, 3 are constants. In other words, (1) 

approximates the RCS magnitude by a sum of sinusoidal 

                                                 
1 The Igla proved more challenging to model than the Stinger 
considered in [10] and was thus used instead. For example, for front-

functions of frequency. Each term takes effect over the 

whole frequency range (e.g., 5 to 15 GHz in Fig. 3), 

which suggests limited flexibility compared to the use of 

kSM in (8). The summed, weighted multiple frequency 

components of kSM (i.e., the mixtures) fulfil a similar role 

to that of basis functions (see (4)), but only have a 

significant effect in the vicinity of the training points 

they are placed at due to the decaying squared 

exponential component of kSM. The placement of multiple 

mixtures locally at each training point makes GP 

regression using kSM in (3) far more powerful than the 

point-source approximation in (1) despite the apparent 

similarity of these two models. 
 

III. VERIFICATION EXAMPLES 
Models of the F9K32 Strela-2 (SA-7 Grail) and Igla-

S (SA-24 Grinch) missiles constructed from information 

freely available on the internet are shown in Fig. 1.1 
 

 
(a) 

 
(b) 

 

Fig. 1. The dimensions of: (a) Strela and (b) Igla missile 

models in mm. 

 

FEKO release 2017.1 [19] was used to establish the 

ground truth data with 501 frequencies being simulated 

from 5 to 15 GHz (20-MHz steps) per missile using the 

method of moments (MoM) solver with default settings. 

Simulations included frontal on-axis incidence (defined 

as the 0° rotation), as well as incidence at rotations of 3°, 

6°, 9°, 12°, and 15° in the horizontal plane measured 

relative to the missile axis from the front. This angular 

range covers hypothetical cases with the target ranging 

from a hovering helicopter (0°) to a cruising propellor-

driven transport aircraft (15°). The incident wave was 

horizontally polarised, and the horizontal component of 

the reflected wave was considered for the RCS calculation. 

Simulation run times and memory requirements 

were reduced by using electrical and magnetic symmetry 

where applicable. Maximum triangle edge lengths of a 

tenth of a wavelength were used, and further run-time 

reduction was achieved by generating separate meshes  

at each frequency. It was not possible to use high-

frequency techniques such as PO as the main features  

on incidence the SE×PER function yielded a mean RMSE of 7.27% for 
the Igla (see Table 2) versus 1.24% for the Stinger [10]. 
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are smaller than five wavelengths even at the highest 

frequencies [1]. A maximum of 285 GB of memory and 

a grand total of 670 hours of simulation time were 

required to simulate the two missiles, despite the small 

target sizes. Each simulation used a cluster of five 

computers, each with a minimum of 64 GB of memory 

and two 12-core Intel Xeon E5-2690 v3 processors 

running at 2.60 GHz. 

Twenty sets of training data points (subsets of the 

ground truth simulation data) were compiled for each 

missile to verify that results were independent of specific 

configurations of training points [10]. To ensure that 

input frequency points were spread over the entire 

frequency range rather than being clumped together (cf. 

Fig. 3), the interval of 5 to 15 GHz was divided into equal 

sub-intervals, and one frequency point was uniformly 

randomly selected from each of these sub-intervals. The 

extreme frequency values (5 and 15 GHz) were then 

added if not yet present, giving a total of about 166 

(Strela) or 168 (Igla) points. 

A frequency step of 50 MHz or less is necessary to 

ensure that 1.5-m separation of the nose and tail of a 

missile can be resolved by the RCS magnitude [1, 10]. 

However, this estimate is somewhat optimistic as  

the nose-to-tail distance decreases with rotation, and 

interactions between other features of a target (e.g., the 

missile wings in Fig. 1) can produce variations over smaller 

frequency ranges. The use of 166 to 168 points is thus 

significantly lower than the estimated 201 required points. 

Training consisted of gradient-based optimisation  

of the negative log marginal likelihood [15, eq.  

(2.29)], which is highly multi-modal. This necessitated 

considering multiple sets of hyperparameter starting 

values to ensure satisfactory results [10, 20]. For the 

spectral mixture covariance function in (8), a choice  

of Q = 3 mixtures gave a good compromise between 

flexibility and time required to optimise the 

hyperparameters. Experiments revealed that 750 sets  

of initial hyperparameter sets reliably gave satisfactory 

results for all runs; i.e. the hyperparameter set with the 

lowest negative log-likelihood always gave the best 

predictions, suggesting that model selection was robust. 

Initial values of hyperparameters in (8) were 

selected according to a procedure suggested in [20]. The 

weights wq, where q = 1, ..., Q, were set equal to the 

standard deviation of the training targets (i.e., simulated 

RCS magnitude values) divided by the number of 

mixtures Q. The repetition rates µq were uniformly 

randomly selected from a range which had zero as lower 

bound, and an upper bound that was proportional to the 

reciprocal of the smallest frequency spacing between the 

randomly-selected training points. The hyperparameters 

σq are the inverse length scales of the squared 

exponentrial constituent functions in (8). The initial 

length scales were taken to be the absolute values of 

random numbers drawn from a zero-mean normal 

distribution that had a standard deviation that was equal 

to the overall range of the training data (length scales are 

defined as positive). It is worth noting that the length 

scale parameters σq determine the effective range of 

frequencies which are affected by each term of (8) for 

each training point.  

The longest per-run training times was on the order 

of 60 minutes, which is far lower than the FEKO 

simulation time. For the SE×PER covariance function 

with four unknown hyperparameters, 300 sets of random 

starting values were used as a larger number did not 

improve results. Results for the hyperparameter sets with 

the lowest negative log-likelihood are reported below. 

The errors obtained by each model were quantified 

using the normalised RMSE defined by: 
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where the predicted and simulated linear RCS magnitudes 

at frequencies l are denoted RCSp(l) and RCSs(l) 

respectively. The results reported below only consider 

the test points (i.e., the subsets of the 501 available points 

remaining after the training points were removed) as  

the errors at the training points are negligible for GP 

regression with noise-free observations. 

Tables 1 and 2 provide RMSE statistics for 20 runs 

of GP regression with the SE×PER and SM3 (SM with 

three mixtures) covariance functions for the Strela and 

Igla missiles, respectively. 

The importance of considering different rotations is 

demonstrated by the fact that the most accurate results 

for the Strela in Table 1 are obtained when the rotation 

is small. However, these missiles may approach their 

targets at larger rotations, so errors in the RCS magnitude 

need to be small over the full range of rotations which 

will be encountered in practice. 

The importance of considering different rotations is 

demonstrated by the fact that the most accurate results 

for the Strela in Table 1 are obtained when the rotation 

is small. However, these missiles may approach their 

targets at larger rotations, so errors in the RCS magnitude 

need to be small over the full range of rotations which 

will be encountered in practice. 

The results in Table 1 indicate that both covariance 

functions provide accurate results for the Strela, with 

SM3 reducing the mean RMSE obtained by SE×PER by 

50% or more for most rotations. The situation changes 

dramatically for the Igla in Table 2, where the accuracy 

of SM3 is considerably better than SE×PER, with mean 

RMSE varying from 3.26% to 7.27% for SE×PER and 

from 0.95% to 1.53% for SM3.  

Tables 1 and 2 also show that SE×PER performance 

was more strongly influenced by the training data 

configurations associated with particular runs than SM3. 
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For example, the RMSEs at a 9° rotation varied from 

0.83% to 5.17% for SE×PER versus 0.23% to 1.71% for 

SM3 in Table 1, and from 2.14% to 6.82% for SE×PER 

and from 0.37% to 3.59% for SM3 in Table 2.  

Figure 2 compares SE×PER and SM3 predictive 

responses for the Strela missile at 9° rotation for a 

particular training data configuration (i.e., the same 

training points were used in both cases). For this run, the 

random selection of training points in the region 5 to  

5.5 GHz produced no points at consecutive response 

maxima, which causes substantial inaccuracies in the 

SE×PER predictions. On the other hand, the expressive 

power of the SM3 covariance function allows the 

regression to infer the underlying response structure 

more effectively, yielding significantly better predictions 

over this range in spite of the unfavourably placed 

training points. 

Figure 3 provides results for the Igla missile at  

12° rotation that are representative of the GP models’ 

mean predictive performance (i.e., the solution with the  

RMSE closest to the mean is shown in each case). While 

the SE×PER model follows the simulated response 

reasonably well, there are several frequencies with large 

errors, and some predictions even have negative values, 

which are not physically possible. Comparing the 

SE×PER and SM3 models in Fig. 3 clearly demonstrates 

the superior performance of SM3, which has both fewer 

and smaller significant deviations from the simulated  

response. 
 

 
   (a) 

 
   (b) 

 

Fig. 2. GP predictive results for the Strela missile at 9° 

rotation using: (a) SE×PER (RMSE = 5.17%), and (b) 

SM3 (RMSE = 1.42%) covariance functions, compared 

to the simulated (true) RCS magnitude. Only the lower 2 

GHz of the 10-GHz range is shown as errors over the 

remainder of the frequency range are negligible. 

 

Table 1: RMSEs of Strela test data 

Cov. Rot. Func. Mean Best Median Worst 

SE×PER 

0° 0.93% 0.66% 0.88% 1.57% 

3° 0.74% 0.50% 0.71% 1.46% 

6° 1.07% 0.63% 0.97% 2.02% 

9° 1.83% 0.83% 1.41% 5.17% 

12° 1.80% 1.00% 1.73% 3.55% 

15° 1.10% 0.45% 0.98% 3.29% 

SM3 

0° 0.49% 0.19% 0.49% 1.12% 

3° 0.34% 0.15% 0.30% 0.64% 

6° 0.52% 0.20% 0.45% 1.11% 

9° 0.87% 0.23% 0.75% 1.71% 

12° 0.86% 0.46% 0.64% 1.90% 

15° 0.81% 0.25% 0.62% 2.43% 
 

Table 2: RMSEs of Igla test data 

Cov. Rot. Func. Mean Best Median Worst 

SE×PER 

0° 7.27% 3.94% 7.63% 10.08% 

3° 5.68% 3.09% 5.97% 7.66% 

6° 3.26% 1.94% 3.10% 5.11% 

9° 3.71% 2.14% 3.22% 6.82% 

12° 6.35% 5.12% 6.47% 7.96% 

15° 4.96% 2.78% 5.09% 7.50% 

SM3 

0° 1.33% 0.52% 1.20% 2.37% 

3° 0.95% 0.37% 0.87% 1.86% 

6° 1.08% 0.64% 1.00% 1.79% 

9° 1.32% 0.37% 1.18% 3.59% 

12° 1.53% 0.65% 1.29% 3.31% 

15° 1.35% 0.51% 1.25% 2.82% 
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(a) 

 
(b) 

 

Fig. 3. Typical GP predictive results for the Igla missile at 12° rotation using: (a) SE×PER (RMSE = 6.35%), and (b) 

SM3 (RMSE = 1.50%) covariance functions, compared to the simulated (true) RCS magnitude. 

 

VI. CONCLUSION 
GP regression with an SM covariance function was 

used to model RCS magnitude responses of shoulder-

launched missiles. The SM covariance function was 

selected since its constituent functions render it 

sufficiently flexible to account for oscillatory responses 

such as those shown in Figs. 2 and 3. Even using  

only three mixtures, the SM covariance function was 

demonstrated to yield very high predictive accuracies for 

all missiles and angles of incidence considered, 

significantly improving on results previously obtained 

for the same problem using a hybrid SE×PER covariance 

function. It was further shown that successful gradient-

based optimisation of the covariance function 

hyperparameters could be carried out in spite of a 

severely multimodal negative log-likelihood function for 

the data considered. Significantly, the accuracy of the 

predictive results was shown to be almost independent of 

the configuration of the training points used.  
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