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Abstract—In this paper, a nonlinear electrostatic surface 

integral equation is presented that is suitable for predicting 

corrosion-related fields. Nonlinear behavior arises due to 

electrochemical reactions at polarized surfaces. Hierarchical H2 

matrices are used to compress the discretized integral equation 

for the fast solution of large problems. A technique based on 

randomized linear algebra is discussed for the efficient 

computation of the Jacobian matrix required at each iteration of 

a nonlinear solution.   
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I. INTRODUCTION 

The prediction of corrosion-related fields is an important 
problem in various areas such as ships in marine environments. 
Knowledge of the corrosion-related fields is useful in the 
design of various systems to mitigate corrosion. Due to the 
electrochemical reactions that may occur at polarized 
conducting surfaces in an electrolyte, the electromagnetic 
integral equations that describe the relevant physics are often 
nonlinear, and Newton-Raphson techniques are commonly 
used in the solution of these nonlinear problems.  However, for 
large problems, the Jacobian matrix that arises in the Newton-
Raphson solution of a nonlinear integral equation can be 
expensive to compute in terms of memory and time. The 
determination of the Jacobian matrix becomes even more 
challenging when using fast methods since the system matrices 
are not fully computed but are represented in a compressed form. 

In this paper, the basic electrostatic surface integral equation 
[1] for predicting corrosion-related (CR) fields is presented.
For large problems, the integral equation discretization is
compressed using Hierarchical (H2) matrices [2].  An overview
is then provided of the appropriate Jacobian matrix that arises
in the nonlinear solution. Finally, an efficient method for
determining the Jacobian matrix using randomized linear
algebra [3] is discussed.

II. THEORY

A. Nonlinear Integral Equation

Consider an unbounded electrolytic region V with a
homogeneous conductivity  . The region V is bound by a 

surface 
b    where 

 is an unbounded surface and

b is a bound surface. The electrostatic potential in the

electrolytic region V  is: 
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where Vr , n̂  is the unit normal to  oriented out of V, and

 1/ 4G   r r  is the static Green’s function. Restriction of

br  leads to the integral equation: 
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where    ˆ ,G d


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

          r n r r is a possible constant 

potential offset that must be determined as part of the nonlinear 
solution. The nonlinear problem admits a one-dimensional null 
space that is eliminated by requiring that the total flux through 
the bound surface be zero: 

 ˆ0

b

d


       n r . (3) 

A pure Neumann problem is assumed, and the normal 

flux on 
b  is specified as    ˆ f   n r . For insulating

surfaces,   0f   , and, for non-insulating surfaces,   0f   . 

If on any part of 
b ,   0f    , then that  portion of the surface

is polarized, and the integral equation is nonlinear. For polarized 
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surfaces,  f   is called a polarization curve. For a nonlinear

problem, the locally-corrected-Nyström discretized integral 
equation is [4]: 

     H G f   , (4) 

where  H  and  G  are the discretized forms of the left and

right (of the equal sign) parts of (2) and (3), respectively, and 

 jj
     r  where 

jr is the jth quadrature point in the

Nyström discretization.  Note that for a linear problem,  f 

in (4) does not depend on   and is known everywhere a priori; 

hence,  G f  reduces to a single excitation vector.

Application of the Newton-Raphson method to (4) gives the 
update equation at the kth iteration as: 

   
1

1k k k kJ F


      , (5) 

where the residual F  is: 

       F G f H     , (6) 

and the Jacobian matrix is: 

       diagk kJ G f H     . (7) 

Here,  diag kf    is a diagonal matrix whose diagonal

entries are taken from the vector  kf   . 

B. Efficient Jacobian Matrix Determination

When the matrices  G  and  H  in (7) are represented as

dense matrices, the determination of  kJ  is straight-forward.

Furthermore, when only a small portion of the bound surface 
is polarized, an efficient update using the Schur complement 

has been presented [4]. On the other hand, if  G  and  H  are

represented in a compressed form, the operations in (7) are more 
difficult since it is desired that all intermediate operations and 

the final  kJ remain in compressed form.  In this work,  G

and  H  are represented using Hierarchical H2 matrices [2],

and, so,  kJ  should also be represented in H2 form. Efficient

computation of (7) requires being able 1) to compute

   diag kG f    directly with the result in an H2 representation

and 2) to subtract two H2 -represented matrices directly with the 
result in an H2 representation.   

In general, the required operations fall into the general form: 

         diag diagC A a B b  , (8) 

where  diag x  indicates a diagonal matrix constructed from

the vector x  and  A ,  B , and  C  are H2 matrices. It is

further assumed that all H2 matrices are built using the same tree 
structure. The necessary algorithm to implement (8) is 
constructed by noting that H2 matrices are usually formed by 
compressing sub-blocks of the matrix using techniques such as 
the Adaptive Cross Approximation (ACA) to efficiently sample 
rows and columns of the sub-block and then compressing the 
sub-block ACA approximation using an SVD [5]. Direct use 
of the ACA+SVD method to sample the rows and columns of 

the        diag diagA a B b  would be inefficient, although it

does produce the desired H2  representation of  C .

Randomized linear algebra methods, on the other hand, 
provide a simple method to generate the SVD compressed sub-
blocks in the H2 representation without resorting to the row and 
column sampling required in an ACA technique.  For example, 
an efficient randomized sampling method to generate the 
SVD of a matrix is detailed in [3]. Such methods enable the 
construction of controllably accurate outer-product 
representations of the sub-matrices of (8) through left and right 
multiplication with sets of random vectors. Because the matrices 
in (8) are represented using H2 data structures, the required 
matrix-vector products encountered when using random 
projection methods (RPMs) can be rapidly evaluated. 

Hence, randomized projection methods can be used to 

construct the H2 representation of  C  in (8). For an efficient

and accurate method, the re-use of random matrix-vector 
product data at different levels of the nested H2 data structure as 

well as rank and convergence estimation for the blocks of  C

are necessary. Finally, random projection methods can be 
modularly fitted within an existing software framework that 

constructs the original H2 representations of  A  and   B  using

ACA-based methods. 
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