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Abstract—Basic Linear Algebra Subroutines (BLAS) are well-known 

low-level workhorse subroutines for linear algebra vector-vector, matrix-

vector and matrix-matrix operations for full rank matrices. The advent of 

block low rank (Rk) full wave direct solvers, where most blocks of the 

system matrix are Rk, an extension to the BLAS III matrix-matrix work 

horse routine is needed due to the agony of Rk addition.  This note outlines 

the problem of BLAS III for Rk LU and solve operations and then outlines 

an alternative approach, which we will call BLAS IV. This approach 

utilizes the thrill of Rk matrix-matrix multiply and uses the Adaptive Cross 

Approximation (ACA) as a methodology to evaluate sums of Rk terms to 

circumvent the agony of low rank addition. 

Keywords—direct factor method of moments, low rank matrix 

algebra and electromagnetic scattering.  

I. BACKGROUND

Full wave solvers for Maxwell’s integral equations are 

the much-preferred approach when they can be implemented. 

And direct factor rather than iterative solutions avoids the 

well-known failures of the latter. However, the direct factor 

computational cost for N unknowns is immense: N3 for matrix 

LU factorization and N2 for each RHS solution.    

The development of the Adaptive Cross Approximation 

(ACA) for computing the low rank UV approximation to 

system matrix blocks, based on spatial grouping of unknowns, 

has spawned whole new approaches to solving MOM system 

matrices. Included is the author’s development in 2006 of the 

first MOM code (Mercury MOM) to LU factor a problem with 

one million unknowns on a PC computer [1].   

Basic linear algebra computational routines are a set 

of low-level routines for performing common linear algebra 

operations for vector-vector, matrix-vector and matrix-matrix 

operations. These subroutines have been highly developed 

since the early 1990’s and collectively are known as the BLAS.  

They are typically found in specialized numerical matrix 

libraries for each type of computer architecture where they have 

been highly optimized.  For example, PC computers running 

Intel processors, the Intel Fortran and C compilers come with 

BLAS libraries optimized for their line of processors. BLAS 

routines come in three varieties: BLAS I for vector-vector 

with O(n) operations; BLAS II for matrix-vector with O(n2) 

operations; and BLAS III for matrix-matrix with O(n3) 

operations. 

II. RK ALGEBRA

A low rank approximation to a (m x n) matrix A is the U V 

product of a column and row matrices, A = U V, where U is (m 

x k) and V is (k x n).  Such an approximation to some tolerance 

ε is said to have rank k where k is usually << (m,n). Memory 

storage reduces from mn to k(m+n) with a rank fraction 

compression metric, defined as the ratio of low rank to full rank 

memory storage, RF = (k*(m+n)) / (mn). A tutorial of Rk matrix 

algebra is found in [2]. 

Multiplication of two Rk matrices has significant 

redeeming value in that the operations count is often reduced 

from O(n3) to O(n2), hence “the thrill of Rk multiplication” [2]. 

Sums of Rk matrices, however, have no redeeming value 

since the rank of the sum is the sum of the ranks of individual 

terms.  There is no memory storage savings since the memory 

storage for the resulting sum is the same as that for all the 

individual terms of the sum, hence the term “the agony of Rk 

summation” [2]. 

The truncation algorithm found in [3] allows 

recompression of an Rk sum to SVD rank. This is made 

possible by repeated application of the truncation algorithm of 

the UV approximation which uses QR and SVD factorizations. 

However, this approach is not feasible for cases where many 

Rk sum terms must be recompressed.  

III. BLAS IV

BLAS III for non Rk matrix-matrix operations is: 

,  C A B C (1) 

where C, A and B are full matrices and α and β are scalars. This 

has O(n3) operations and is usually the most optimized of the 

BLAS. The common name for this operation is “gemm”. 

With spatial grouping for electrically large problems (as 

characterized by tens of thousands to several million unknowns 

with group sizes from 500 to 10,000 unknowns) most all blocks 

in the system matrix, except for diagonal self-blocks, become 

Rk.  This includes not only Z blocks but also its L and U factors. 

And for scattering problems with many RHS illumination 

angles, the RHS voltage excitation matrix is Rk as well as the 

current solution J and/or M. 

To see the need for a BLAS IV operation for Rk matrices, 

we need to examine the block formulas for LU factorization and 

the forward/backward solve operation, [4]:   
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When the block matrices in (2) are of Rk form, we see the 

need for the BLAS IV operation involving the summation of 

matrix-matrix products: 
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 C A B C (3) 

where C, A and B are Rk matrices. This is the matrix-matrix 

multiply summation form of the BLAS III case. One could 

argue that this is simply a repeated operation of BLAS III, and 

indeed it is. The difficulty is the agony of computing the Rk 

sum.   

Matrix blocks, for perspective, are typically 500 x 500 to 

10 000 x 10 000 and the number of sum terms may be in the 

hundreds. 

A methodology for evaluating (3), using the thrill of Rk 

multiplication and the Adaptive Cross Approximation for 

bypassing the agony of low rank Rk sum evaluation is as 

follows.   

Use Rk multiplication to set ApBp = Sp, where Sp terms are 

also Rk, so that (3) is rewritten as: 
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The sum term is computed using the ACA where we recall 

that the ACA needs rows and columns of the matrix being 

approximated. Writing (4) in full Rk UV form we have: 
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The ACA algorithm to compute the left-hand side requires 

the rows / columns of the right-hand side of (5). This is a 

straight forward vector-matrix and matrix-vector evaluation of 

a gemv form: 
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IV. PC WORKSTATIONS

BLAS IV methodology has allowed the use inexpensive 

PC workstations, such as found on engineer’s desks, to use a 

direct LU factorization for full wave electromagnetic solvers. 

Access to very costly and limited time slot availability of super 

computer clusters is not needed.  PC workstation problem sizes 

up to five million unknowns (with RWG average edge lengths 

of 0.1 λ) have been accomplished [5]. 

V. CONCLUDING REMARKS

The need for a BLAS IV for low rank Rk sums of matrix-

matrix multiply was demonstrated. A computational approach 

using Rk multiplication for the multiply terms and the ACA for 

computing the sum term was outlined. 
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