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Abstract—Including optical nonlinearity in FDTD software in a
stable, efficient, and rigorous way can be challenging. Traditional
methods address this challenge by solving an implicit form of
Maxwell’s equations iteratively. Reaching numerical convergence
over the entire numerical space at each time step demands
significant computational resources, which can be a limiting
factor for the modeling of large-scale three-dimensional nonlinear
optics problems (complex photonics devices, laser filamentation,
...). Recently, we proposed an explicit methodology based on a
nonlinear generalization of the Lorentz dispersion model and
developed example cases where it was used to account for both
linear and nonlinear optical effects. An overview of this work is
proposed here.

Index Terms—FDTD modeling, nonlinear materials, photonics.

I. INTRODUCTION

Including optical nonlinearity in the finite-difference time-
domain (FDTD) framework is not straightforward. It is easily
demonstrated with the Ampère’s circuital law:

∇×H− ε0
∂E

∂t
=
∂P

∂t
, (1)

where the source term depends on a nonlinear susceptibility
of the form:

P = ε0(χ(1)E + χ(2)E2 + χ(3)E3 + . . .), (2)

Yee discretization of (1) with (2) leads to a set of coupled
nonlinear equations that are implicit in the electric field vector
and whose solution is nontrivial. A formal solving approach,
proposed by Greene and Taflove [1], uses a recursive Newton
method to obtain an approximate solution for E. To ensure
numerical convergence, it has to be iterated over the entire
numerical space a few times per time step, at minimum. This is
a rigorous way to include optical nonlinearity into FDTD, but
efficient implementation for solving three-dimensional prob-
lems is inherently complex. For that reason, FDTD developers
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typically rely, instead, on explicit tricks whose implementation
is simpler and computationally more efficient (see, e.g., [2]).
In a series of papers [3]–[5], we developed an explicit method-
ology based on a nonlinear generalization of the Lorentz
dispersion model, providing a rigorous, flexible, efficient, and
transparent approach to the nonlinear-FDTD problem.

II. THE NONLINEAR LORENTZ MODEL

Typical nonlinear optics scenarios are reasonably described
by the two-level atom model (see, e.g., [6]). We have shown
in [5] that when there is a negligible transition probability to
the upper level (weak field, long wavelength), this quantum
mechanical model can be reduced to the following second-
order differential equation for the induced macroscopic polar-
ization density P:

d2P

dt2
+γ

dP

dt
+ω2

0P = ω2
0ε0(χ̄(1)E+ χ̄(2)E2 + χ̄(3)E3 + . . .).

(3)
The model is parametrized by an effective damping constant
γ, the transition energy ~ω0, and the nth-order optical sus-
ceptibility parameters χ̄(n) (ε0 is the electric constant). The
overbar indicates that the χ̄(n)’s are assumed to be constant,
i.e., they do not vary much on the electronic time-scale
(see III-B for further details). As emphasized in [4], (3)
can be discretized using the leapfrog method to match the
Yee discretization scheme (see, e.g., [7]), resulting in a fully
explicit FDTD integration of Maxwell equations. The linear
and nonlinear material responses are then introduced via the
effective susceptibility parameters χ̄(n), while dispersion is set
by ω0 and γ (see [5] for further development on this topic).

III. APPLICATION EXAMPLES

A. Second Harmonic Generation

We considered quasi-phase-matched (QPM) second har-
monic generation (SHG) in periodically poled lithium niobate
(PPLN) and compared FDTD simulations using the nonlinear
Lorentz model (3) (referred to as NL-FDTD below) to a con-
ventional theoretical model for QPM SHG (see, e.g., (2.7.10)
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Fig. 1. Application examples of the nonlinear Lorentz model equation (3), combined with FDTD integration of Maxwell’s equations (NL-FDTD, see also
[3]–[5]). In (a), NL-FDTD simulations of quasi-phase matching (QPM) in periodically poled lithium niobate show exceptional agreement with traditional
theoretical models. In (b), a GaAs crystal is aligned with the polarization of the electric field to give no second harmonic (GaAs). However, SHG emerges
when a gold split-ring resonator is placed on top (+ SRR, see below legend for sketch). In (c), the propagation of a sech2-shaped laser pulse in fused silica is
modelled with NL-FDTD (the envelope is obtained by taking the absolute value of the Hilbert transform of the electric field). Depending on the input laser
intensity, the pulse after travelling over 6 mm exhibits a solitonic behavior (compare the “soliton” and “initial” curves) or pronounced envelope distortion due
to modulation instability (MI). Finally in (d), spatio-temporal structuring of a Gaussian laser pulse during self-focusing in air at propagation distance z.

and (2.7.11) in [6]). For the demonstration, we considered a
plane wave moving along the axis of an infinite PPLN crystal,
modelled with an homogeneous linear index and a second-
order parameter χ̄(2) whose sign is switched periodically to
achieve QPM (see [4] for details). The excellent agreement
between theory and NL-FDTD in Fig. 1 (a) shows that the
NL-FDTD analysis succeeds in reproducing quantitatively the
dispersion, scattering, and wave mixing processes in SHG, as
well as their interplay.

For rigorous modeling of three-dimensional (3D) optics in
solids, it is often necessary to consider the tensorial nature
of the susceptibility. This has to be added explicitly to (3).
To test this procedure, we considered 3D vectorial NL-FDTD
modeling of the SHG enhancement in a gallium arsenide
(GaAs) substrate by a split-ring resonator (SRR) nano-antenna.
The gold SRR was modelled with a Drude equation while
GaAs was modelled with the nonlinear Lorentz equation that
follows:

d2PGaAs

dt2
+
dPGaAs

dt
+ ω2

0PGaAs = (4)

ω2
0ε0χ̄

(1)E + ε0χ̄
(2) [(EzEz − EyEy) i− 2ExEy j] ,

where i and j are unit vectors along x and y, respectively. With
the electric field polarized along x, there is no second-order
effect with GaAs alone [see the “GaAs” curve in Fig. 1 (b)].
Nevertheless, when the SRR is present near-field components
in y and z are created, which induces SHG in GaAs [see the
“+ SRR” curve in Fig. 1 (b)].

B. Raman Nonlinearity

The nonlinear Lorentz equation (3) accounts for the fast
(almost instantaneous) optical response on the electronic
time scale. An accurate description of the nonlinear optical
processes in centrosymmetric dielectrics must also include
a delayed contribution associated with stimulated molecular
Raman scattering. This can be done by complementing (3)
with an equation that accounts for the modification of the
nonlinear susceptibility on the “slow” molecular time scale.

The complete model is then given by the following two
equations [4]:

d2P

dt2
+ γ

dP

dt
+ ω2

0P = ω2
0ε0(χ̄(1)E + αχ̄(3)E3 +QE),

(5a)
d2Q

dt2
+ 2γR

dQ

dt
+ ω2

RQ = (1− α)χ̄(3)ω2
R |E|

2
, (5b)

where α is a parameter that defines the balance between the
instantaneous (Kerr) and delayed (Raman) contributions to
the third-order susceptibility. The Raman response is itself
parameterized by the angular frequency and damping constants
ωR and γR whose values are chosen to fit a given Raman-gain
spectrum. An equation like (5b) is also used for the Greene-
Taflove’s implicit method [1], but here integration of both (5a)
and (5b) with the leapfrog technique leads to a fully explicit
nonlinear-FDTD scheme (see [4] for details). Examples of
results obtained with this model are given in Figs. 1 (c-d).
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