
Computational Performance of MATLAB and Python

for Electromagnetic Applications

Alec Weiss

Department of Electrical Engineering

Colorado School of Mines

Golden, Colorado

aweiss@mines.edu

Atef Elsherbeni*

Department of Electrical Engineering

Colorado School of Mines

Golden, Colorado

aelsherb@mines.edu

Abstract—MATLAB and Python are two commonly used

scripting languages for prototyping electromagnetic problems

today. Each of these languages provides access to

computationally efficient functions allowing a user to easily run

many math heavy problems with minimal programming. In this

paper we will discuss the usage of MATLAB and a variety

of libraries in Python capable of running these efficient

computations. Tests will be run in both languages to compare

both CPU and GPU computations. The runtimes of a variety of

problems using each of these platforms will also be compared

for a variety of mathematical operations typically used in

electromagnetic problems. Finally, a simple angle of arrival

calculation using conventional beamforming will be performed

to show these speeds on a realistic problem.

Keywords—Computational electromagnetics, GPU

programming, MATLAB, python.

I. INTRODUCTION

Modern high-level programming languages such as

MATLAB and Python provide an easy way to quickly create

software for electromagnetic simulations and data processing.

These languages excel by abstracting the difficulties and

verbosity of lower level languages such as FORTRAN or C.

This abstraction comes at the expense of computational

efficiency. MATLAB and python libraries such as Numpy

and Numba are designed specifically to increase the efficiency

by calling more efficient C and FORTRAN subroutines.

Acceleration techniques in MATLAB for computational

electromagnetic (CEM) problems has been previously

studied in various papers [1,2]. Previous works have also

compared MATLAB and Python in a variety of areas such as

the usage for linear algebra [3] and general usability [4] in

comparison to MATLAB. Previous work has not compared

MATLAB and Python for usage with complex numbers

with basic operators ranging from addition to complex

exponentials which is important as these datatypes and

operators are prevalent in a variety of CEM applications.

This work covers the comparison of MATLAB and

Python for complex number calculations that may be seen in

typical electromagnetic problems. Each language will be

tested with variety of libraries and programming techniques.

Initial tests run and compare speeds when performing a single

operation such as (e.g., 𝑎 + 𝑏) and a small collection of

operations (e.g., 𝑎 ∗ (𝑏 + 𝑐)) on a set of data providing a basis

*Adjunct Professor, Department of Elec. & Computer Eng., King Abdulaziz

University, Jeddah, Saudi Arabia.

for a large variety of electromagnetic problems. Results

comparing a realistic angle of arrival (AoA) simulation using

conventional beamforming will also be tested to provide a

more realistic CEM application.

II. INTRODUCTION TO PYTHON AND MATLAB FOR CEM

A. MATLAB

An inherent benefit of MATLAB is that all required
commands are built in and do not require the importing of
libraries. This can make the language easier to learn and
implement for an inexperienced programmer but comes at
the cost of flexibility. While many ways exist to perform
computations in MATLAB, this work will focus on standard
usage of built-in functions without any special optimizations.
Code can also easily take advantage of graphics processing
units (GPUs) using the gpuArray command. MATLAB Results
were obtained using MATLAB R2018a.

B. Python

Unlike MATLAB, python libraries must be explicitly
imported. While this adds an extra layer of difficulty to the
language, it also provides the flexibility of using a variety of
libraries. This work will test a few of the most popular libraries
for vectorized computation on the CPU. These libraries are
Numpy/Scipy and Numba. Numpy and Scipy are a set of
commonly used libraries for performing many vectorized and
linear algebra operations in a similar way to MATLAB where
once the variables are declared, the multiplication operator
will perform elementwise multiplication with optimized
subroutines. Numba extends upon the capability of Numpy by
allowing for user defined vector functions and precompiled
sections of code. Like MATLAB, code can also easily be
extended to a GPU using the CuPy library. Python Results
were obtained with Python 3.7.3, Numpy 1.16.5, Scipy 1.3.1,
and Numba 0.44.1.

III. OPERATOR TESTING

Initial speed comparisons were done with testing of single
and multi-operator arithmetic. By testing these more generic
situations, it is possible to estimate the runtimes of a variety
of CEM problems. Each of these tests was run with both single
and double precision complex data types.

Tests with a single operator were run for both single (using
the single() command) and double precision complex values
using MATLAB and Python. The tests were run for typical
arithmetic operators (+,-,*,/) along with a complex
exponential, matrix multiply, and summation. Additional

ACES JOURNAL, Vol. 35, No. 11, November 2020

Submitted On: September 10, 2020
Accepted On: September 10, 2020 1054-4887 © ACES

https://doi.org/10.47037/2020.ACES.J.351166

1394

testing was also performed with LU decomposition, FFT,
sparse matrix multiplication, and the equation 𝑐 = 𝑎 + 𝑏 ∗
𝑒𝑥𝑝(𝑎) where a and b are complex matrices. All tests were
run on a Intel Xeon E5-2620 processor with 128GB of RAM.
The runtimes in seconds from these tests for double and single
precision are shown in Table and II, respectively. It should be
noticed that for most of the tested cases, using either Numba
or Numpy provides very close runtimes to MATLAB. In some
cases, such as FFT, combined computations, and sparse
matrix multiplication Python outperforms the similar routines
in MATLAB.

Table I. Double Precision Complex Operation Runtimes (seconds)

Table II. Single Precision Complex Operation Runtimes (seconds)

Operation MATLAB
Python

(Numpy)

Python

(Numba)

Add 0.1135 0.1459 0.1512

Subtract 0.1136 0.1481 0.1538

Multiply 0.1180 0.1504 0.1567

Divide 0.1275 0.4082 0.1538

Matrix Multiply 3.7282 3.5604 N/A

Exponential 0.2127 2.9446 0.1575

Sum 0.0086 0.0287 N/A

LU Decomposition 1.5741 2.6686 N/A

FFT 0.1218 0.0783 N/A

Combined 0.3639 3.2805 0.1609

Sparse N/A 1.8862 N/A

IV. REALISITC AOA EXAMPLE

Angle of arrival calculations are performed in a variety of
EM applications to estimate the direction from which waves
are impinging upon an antenna array. While many algorithms
exist for this calculation (e.g., [5]), a basic example of
conventional beamforming can be used for speed comparison

because it contains complex elementwise multiplication,
exponentials, matrix multiplication, and summations. The
conventional beamforming equation with frequency domain
data for AoA estimation can be written as:

∑ 𝑊(𝑒)𝑆(𝑒, 𝑓)𝑒𝑘(𝑓)r(e)

𝐸

𝑒=1

,

where 𝐸 is our total number of elements, 𝑊(𝑒) is the

weighting on each of the elements, and 𝑒𝑘(𝑓)𝑟(𝑒) is the
steering vector. 𝑆(𝑒, 𝑓) is the received complex data at
each element. For this problem incident plane waves were
synthetically impinged upon a planar array allowing
simulation of what an antenna array of that shape and size may
measure. The runtimes in seconds for double and single
precision beamforming on a 10x10 element planar array with
a synthetic incident plane wave at 45 degrees show what
MATLAB is having a slight performance advantage over
Python using Numba as shown in Table III.

Table III. Beamforming Runtimes (Seconds)
Mean Runtime

(Seconds)
MATLAB

Python
(Numpy)

Python
(Numba)

Double 0.6448 1.8860 0.7776

Single 0.2779 1.4079 0.3270

V. CONCLUSIONS

We have shown the runtime comparisons for a variety of
operations on complex numbers in MATLAB and two Python
libraries that are typically used in CEM applications using
CPUs. Similar analysis conducted on GPUs will be presented
at the conference. While in many of the cases MATLAB
outperforms Python, Python comes very close in most
operations and in some cases even outperforms MATLAB.
Python comes with the added benefits of being completely
free along with having many other libraries and acceleration
techniques beyond Numpy and Numba to compete with the
runtimes that MATLAB can achieve.

REFERENCES

[1] A. J. Weiss, A. Z. Elsherbeni, V. Demir, and M. F. Hadi, “Using

MATLAB’s Parallel Processing Toolbox for Multi-CPU and Multi-GPU

Accelerated FDTD Simulations,” vol. 34, no. 5, p. 7, 2019.

[2] M. Capek, P. Hazdra, J. Eichler, P. Hamouz, and M. Mazanek,

“Acceleration Techniques in Matlab for EM Community,” in 2013 7th

European Conference on Antennas and Propagation (EuCAP), 2013, pp.
2639-2642.

[3] J. Unpingco, “Some Comparative Benchmarks for Linear Algebra
Computations in Matlab and Scientific Python,” in 2008 DoD HPCMP

Users Group Conference, 2008, pp. 503-505.

[4] J. Ranjani, A. Sheela, and K. P. Meena, “Combination of NumPy, SciPy
and Matplotlib/Pylab - A Good Alternative Methodology to MATLAB

- A Comparative Analysis,” in 2019 1st International Conference on

Innovations in Information and Communication Technology (ICIICT),
2019, pp. 1-5.

[5] P. Vouras, et al., “Gradient-Based Solution of Maximum Likelihood

Angle Estimation For Virtual Array Measurements,” in 2018 IEEE
Global Conference on Signal and Information Processing (GlobalSIP),

2018, pp. 1257-1261.

Operation MATLAB
Python

(Numpy)

Python

(Numba)

Add 0.2249 0.2814 0.2774

Subtract 0.2280 0.2745 0.2847

Multiply 0.2281 0.2706 0.2927

Divide 0.2322 0.4667 0.2845

Matrix Multiply 8.0504 7.5575 N/A

Exponential 0.2974 3.1985 0.3177

Sum 0.0169 0.0515 N/A

LU Decomposition 2.9076 4.4278 N/A

FFT 0.2113 0.1345 N/A

Combined 0.5750 3.8899 0.3292

Sparse 4.2567 3.0242 N/A

 WEISS, ELSHERBENI: COMPUTATIONAL PERFORMANCE OF MATLAB AND PYTHON1395

	Article 91.pdf
	I. Introduction
	II. Design of a Varifocal Metalens
	References

	Article 55.pdf
	I. Introduction
	II. Motor Drive System Characterization Module
	III. The Taguchi-EM-PSO Design Envirnoment
	Initial and Optimal Design
	IV. Conclusion
	References

	Article 54.pdf
	I. Introduction
	II. IM Drive System under Study
	III. FEA Model Results
	A. Details of the Motor
	B. FEA Results

	IV. Conclusion

	Article 46.pdf
	I. Introduction
	II. Modeling of Non-Ideal Cable Shield Connections
	III. Parallel Direct ACA Solver
	IV. RL-GO Edge and Wedge Diffraction
	V. Automotive Radar
	References

	Article 9.pdf
	I. INTRODUCTION
	II. SHAPE SYNTHESIS TECHNIQUE AND IMPLEMENTATION
	III. DESIGN EXAMPLE
	REFERENCES

 HistoryItem_V1
 AddNumbers

 Range: all odd numbered pages
 Font: Times-Roman (unembedded) 8.0 point
 Origin: top right
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210122154821

 1
 1

 TR

 1
 1
 1
 0
 0
 1264
 TR
 1
 0
 0
 435
 74
 0
 1
 R0
 8.0000

 Odd
 7
 AllDoc
 174

 CurrentAVDoc

 [Sys:ComputerName]
 43.2000
 26.6400

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0m
 Quite Imposing Plus 4
 1

 0
 191
 190
 db184e26-052b-4cd4-989d-0b3e02d0f8e6
 96

 1

 HistoryItem_V1
 AddNumbers

 Range: all even numbered pages
 Font: Times-Roman (unembedded) 8.0 point
 Origin: top left
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210122154828

 1
 1

 TL

 1
 1
 1
 0
 0
 1264
 TR
 1
 0
 0
 435
 74

 0
 1
 R0
 8.0000

 Even
 7
 AllDoc
 174

 CurrentAVDoc

 [Sys:ComputerName]
 43.2000
 26.6400

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0m
 Quite Imposing Plus 4
 1

 0
 191
 189
 1ad0ed6e-3cbe-4c74-9d20-e6d446af96b6
 95

 1

 HistoryList_V1
 qi2base

