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Abstract—MATLAB and Python are two commonly used 

scripting languages for prototyping electromagnetic problems 

today. Each of these languages provides access to 

computationally efficient functions allowing a user to easily run 

many math heavy problems with minimal programming. In this 

paper we will discuss the usage of MATLAB and a variety 

of libraries in Python capable of running these efficient 

computations. Tests will be run in both languages to compare 

both CPU and GPU computations. The runtimes of a variety of 

problems using each of these platforms will also be compared 

for a variety of mathematical operations typically used in 

electromagnetic problems. Finally, a simple angle of arrival 

calculation using conventional beamforming will be performed 

to show these speeds on a realistic problem. 

Keywords—Computational electromagnetics, GPU 

programming, MATLAB, python. 

I. INTRODUCTION

Modern high-level programming languages such as 

MATLAB and Python provide an easy way to quickly create 

software for electromagnetic simulations and data processing. 

These languages excel by abstracting the difficulties and 

verbosity of lower level languages such as FORTRAN or C. 

This abstraction comes at the expense of computational 

efficiency. MATLAB and python libraries such as Numpy 

and Numba are designed specifically to increase the efficiency 

by calling more efficient C and FORTRAN subroutines. 

Acceleration techniques in MATLAB for computational 

electromagnetic (CEM) problems has been previously 

studied in various papers [1,2]. Previous works have also 

compared MATLAB and Python in a variety of areas such as 

the usage for linear algebra [3] and general usability [4] in 

comparison to MATLAB. Previous work has not compared 

MATLAB and Python for usage with complex numbers 

with basic operators ranging from addition to complex 

exponentials which is important as these datatypes and 

operators are prevalent in a variety of CEM applications. 

This work covers the comparison of MATLAB and 

Python for complex number calculations that may be seen in 

typical electromagnetic problems. Each language will be 

tested with variety of libraries and programming techniques. 

Initial tests run and compare speeds when performing a single 

operation such as (e.g., 𝑎 + 𝑏 ) and a small collection of 

operations (e.g., 𝑎 ∗ (𝑏 + 𝑐)) on a set of data providing a basis 

*Adjunct Professor, Department of Elec. & Computer Eng., King Abdulaziz 

University, Jeddah, Saudi Arabia.

for a large variety of electromagnetic problems. Results 

comparing a realistic angle of arrival (AoA) simulation using 

conventional beamforming will also be tested to provide a 

more realistic CEM application. 

II. INTRODUCTION TO PYTHON AND MATLAB FOR CEM

A. MATLAB

An inherent benefit of MATLAB is that all required
commands are built in and do not require the importing of 
libraries. This can make the language easier to learn and 
implement for an inexperienced programmer but comes at 
the cost of flexibility. While many ways exist to perform 
computations in MATLAB, this work will focus on standard 
usage of built-in functions without any special optimizations. 
Code can also easily take advantage of graphics processing 
units (GPUs) using the gpuArray command. MATLAB Results 
were obtained using MATLAB R2018a.  

B. Python

Unlike MATLAB, python libraries must be explicitly
imported. While this adds an extra layer of difficulty to the 
language, it also provides the flexibility of using a variety of 
libraries. This work will test a few of the most popular libraries 
for vectorized computation on the CPU. These libraries are 
Numpy/Scipy and Numba. Numpy and Scipy are a set of 
commonly used libraries for performing many vectorized and 
linear algebra operations in a similar way to MATLAB where 
once the variables are declared, the multiplication operator 
will perform elementwise multiplication with optimized 
subroutines. Numba extends upon the capability of Numpy by 
allowing for user defined vector functions and precompiled 
sections of code. Like MATLAB, code can also easily be 
extended to a GPU using the CuPy library. Python Results 
were obtained with Python 3.7.3, Numpy 1.16.5, Scipy 1.3.1, 
and Numba 0.44.1. 

III. OPERATOR TESTING

Initial speed comparisons were done with testing of single 
and multi-operator arithmetic. By testing these more generic 
situations, it is possible to estimate the runtimes of a variety 
of CEM problems. Each of these tests was run with both single 
and double precision complex data types. 

Tests with a single operator were run for both single (using 
the single() command) and double precision complex values 
using MATLAB and Python. The tests were run for typical 
arithmetic operators (+,-,*,/) along with a complex 
exponential, matrix multiply, and summation. Additional 
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testing was also performed with LU decomposition, FFT, 
sparse matrix multiplication, and the equation 𝑐 =  𝑎 + 𝑏 ∗
𝑒𝑥𝑝(𝑎) where a and b are complex matrices. All tests were 
run on a Intel Xeon E5-2620 processor with 128GB of RAM. 
The runtimes in seconds from these tests for double and single 
precision are shown in Table  and II, respectively. It should be 
noticed that for most of the tested cases, using either Numba 
or Numpy provides very close runtimes to MATLAB. In some 
cases, such as FFT, combined computations, and sparse 
matrix multiplication Python outperforms the similar routines 
in MATLAB. 

Table I. Double Precision Complex Operation Runtimes (seconds) 

Table II. Single Precision Complex Operation Runtimes (seconds) 

Operation MATLAB 
Python 

(Numpy) 

Python 

(Numba) 

Add 0.1135 0.1459 0.1512 

Subtract 0.1136 0.1481 0.1538 

Multiply 0.1180 0.1504 0.1567 

Divide 0.1275 0.4082 0.1538 

Matrix Multiply 3.7282 3.5604 N/A 

Exponential 0.2127 2.9446 0.1575 

Sum 0.0086 0.0287 N/A 

LU Decomposition 1.5741 2.6686 N/A 

FFT 0.1218 0.0783 N/A 

Combined 0.3639 3.2805 0.1609 

Sparse N/A 1.8862 N/A 

IV. REALISITC AOA EXAMPLE

Angle of arrival calculations are performed in a variety of 
EM applications to estimate the direction from which waves 
are impinging upon an antenna array. While many algorithms 
exist for this calculation (e.g., [5]), a basic example of 
conventional beamforming can be used for speed comparison 

because it contains complex elementwise multiplication, 
exponentials, matrix multiplication, and summations. The 
conventional beamforming equation with frequency domain 
data for AoA estimation can be written as: 

∑ 𝑊(𝑒)𝑆(𝑒, 𝑓)𝑒𝑘(𝑓)r(e)

𝐸

𝑒=1

, 

where 𝐸  is our total number of elements, 𝑊(𝑒)  is the 

weighting on each of the elements, and 𝑒𝑘(𝑓)𝑟(𝑒)  is the
steering vector. 𝑆(𝑒, 𝑓)  is the received complex data at 
each element. For this problem incident plane waves were 
synthetically impinged upon a planar array allowing 
simulation of what an antenna array of that shape and size may 
measure. The runtimes in seconds for double and single 
precision beamforming on a 10x10 element planar array with 
a synthetic incident plane wave at 45 degrees show what 
MATLAB is having a slight performance advantage over 
Python using Numba as shown in Table III. 

Table III. Beamforming Runtimes (Seconds) 
Mean Runtime 

(Seconds) 
MATLAB 

Python 
(Numpy) 

Python 
(Numba) 

Double 0.6448 1.8860 0.7776 

Single 0.2779 1.4079 0.3270 

V. CONCLUSIONS

We have shown the runtime comparisons for a variety of 
operations on complex numbers in MATLAB and two Python 
libraries that are typically used in CEM applications using 
CPUs. Similar analysis conducted on GPUs will be presented 
at the conference. While in many of the cases MATLAB 
outperforms Python, Python comes very close in most 
operations and in some cases even outperforms MATLAB. 
Python comes with the added benefits of being completely 
free along with having many other libraries and acceleration 
techniques beyond Numpy and Numba to compete with the 
runtimes that MATLAB can achieve. 
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Operation MATLAB 
Python 

(Numpy) 

Python 

(Numba) 

Add 0.2249 0.2814 0.2774 

Subtract 0.2280 0.2745 0.2847 

Multiply 0.2281 0.2706 0.2927 

Divide 0.2322 0.4667 0.2845 

Matrix Multiply 8.0504 7.5575 N/A 

Exponential 0.2974 3.1985 0.3177 

Sum 0.0169 0.0515 N/A 

LU Decomposition 2.9076 4.4278 N/A 

FFT 0.2113 0.1345 N/A 

Combined 0.5750 3.8899 0.3292 

Sparse 4.2567 3.0242 N/A 
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