
Effect of Sparse Array Geometry on Estimation of
Co-array Signal Subspace
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Abstract—This paper considers the effect of sparse array
geometry on the co-array signal subspace estimation error
for Direction-of-Arrival (DOA) estimation. The second largest
singular value of the signal covariance matrix plays an important
role in controlling the distance between the true subspace and
its estimate. For a special case of two closely-spaced sources
impinging on the array, we explicitly compute the second largest
singular value of the signal covariance matrix and show that it
can be significantly larger for a nested array when compared
against a uniform linear array with same number of sensors.

Index Terms—Davis Kahan, Difference co-arrays, Sparse ar-
rays, Subspace Estimation.

I. INTRODUCTION

Sparse array geometries have recently gained significant
research interest [1]–[4] owing to several attractive benefits
over traditionally used uniform linear arrays (ULA), such as
the ability to identify O(P 2) uncorrelated sources using only
P sensors [1], [2], as well as lower Cramér-Rao bounds and
higher spatial resolution than ULAs with the same number of
spatial and temporal measurements [4], [5]. These enhanced
abilities are attributed to the fact that the difference co-arrays
of these sparse arrays contain a ULA segment (consisting of
consecutive lags around 0) of size O(P 2) that can be exploited
by algorithms such as co-array MUSIC [1], [4], [6] to resolve
more sources than sensors. However, the performance of
co-array based DOA estimation algorithms can potentially
deteriorate when the so-called signal subspace is not identified
properly. In this paper, we study how the geometry of sparse
arrays can influence the distance between the true signal sub-
space and its estimate for the special case of two narrowband
sources. We show that the second largest singular value of the
signal covariance matrix controls the mismatch between the
true and estimated subspaces. In general, greater the second
largest singular value, smaller the mismatch. Given a sparse
array and ULA with same number of sensors, we show that the
second largest singular value of the sparse can be significantly
larger than that of the ULA. We will use this result in future to
understand non asymptotic performance of sparse arrays with
closely spaced sources.

II. EFFECT OF SPARSE ARRAY GEOMETRY ON SIGNAL
SUBSPACE PERTURBATION

Consider a linear array of P antennas whose physical
locations are given by {dpλ/2, p = 1, 2, · · · , P}, where dp
belongs to an integer set S, |S| = P , and λ is the wavelength
of far-field narrowband sources impinging on the array. In this
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paper we consider the special case of two narrowband sources
with Direction-of-Arrival (DOA) θ1, θ2 ∈ (−π/2, π/2]. The
data vector y ∈ CP consisting of measurements collected at
the P antennas is given by:

y = Ax + n. (1)

Here A = [a(θ1) a(θ2)] is the array manifold matrix where
a(θi) = [ejπd1sin(θi) . . . ejπdP sin(θi)]T represents the array
steering vector corresponding to the direction θi. Furthermore
x = [x1, x2]T is the vector of complex amplitude of the two
sources and n represents the additive noise at the P antennas.
Role of Difference Co-array: If we assume that the source
amplitudes x1, x2 are zero-mean statistically uncorrelated ran-
dom variables, and the noise is zero-mean white and statisti-
cally independent of x, the correlation matrix of y is given
by:

Ryy = APAH + σ2
nIP , (2)

where P = diag(p1, p2) is a diagonal matrix with p1 =
E(|x|21), p2 = E(|x|22) and E

(
nnH

)
= σ2

nI. Notice that the
cross-correlation between the measurement at the mth and kth
antennas is given by:

[Ryy]m,k =
2∑
i=1

ejπ sin θi(dm−dk)pi + σ2
nδ[m− k]. (3)

In other words, the cross-correlation depends on the pair-
wise difference {dm− dk} between the sensor locations. This
naturally leads to the notion of a difference set [1].

Definition II.1. The difference set of a set of integers S is
defined as DS = {di − dj |di, dj ∈ S}.

Given a sensor array S, we can associate a “virtual
difference co-array” whose element locations are given by
the set DS. We can also define an integer Nmax as the
largest integer such that {0, 1, . . . , Nmax} ⊂ DS. In this case,
the set US = {0, 1, · · · , Nmax} is called the “Non-negative
ULA segment” of the difference co-array. We can extract
Nmax+1 entries Rm,n of the data correlation matrix such that
{dm − dn} ∈ US and collect them in a vector z ∈ CNmax+1

[1]. Using (3), it can be shown that:
z = AUSp + σ2

ne, (4)

where AUS ∈ C(Nmax+1)×2 is the array manifold matrix
corresponding to a ULA with element locations given by the
set US and e = [1, 0, 0, . . . , 0] is a canonical basis vector
in CNmax+1. It is well-known that for specially designed
sparse arrays such as nested and coprime arrays [1], [2],
Nmax = Θ(P 2) whereas for ULA, Nmax = Θ(P ). The
large difference set of sparse arrays can be utilized to localize
more sources than sensors using the so-called co-array MUSIC
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algorithm [1], [4], [6]. In this paper, we investigate how the
large difference co-array of nested arrays helps to characterize
subspace estimation errors.
Distance between Perturbed and True Signal Subspaces:

Let ẑ be an estimate of z obtained from the sample
covariance matrix R̂yy. Then, we have:

Toep(ẑ) = AUSPA
H
US

+ H, (5)

where Toep(ẑ) represents a Hermitian Toeplitz matrix whose
first column is ẑ and H = Toep

(
σ2
ne + ẑ− z

)
captures

the effect of noise and estimation error. The co-array signal
subspace is defined as the span of the co-array steering vectors
corresponding to the source directions θ1 and θ2 and is given
by [4]:

Sca = Range (AUS) . (6)

Algorithms such as co-array MUSIC [1], [4] aim to obtain
an estimate of this subspace, which is subsequently used for
identifying the DOAs using similar principle as the classical
MUSIC algorithm [7]. A popular practice is to use the follow-
ing estimate of Sca:

Ŝca = Range
(
Û
)
, (7)

where the columns of Û ∈ C(Nmax+1)×2 are the singular
vectors of Toep(ẑ) corresponding to the two largest singular
values. It is obvious that the accuracy of DOA estimation
crucially depends on the subspace estimation error, which in
turn, depends on the array geometry. Let U be an orthogonal
basis for Sca. Let σ2 be the second largest singular value of
AUSPA

H
US

. If σ2 > ‖H‖2, we can use Davis-Kahan theorem
[8] to bound the distance between the true subspace and its
estimate as:

dist(U, Û) = ‖UUH − ÛÛH‖2 ≤
‖H‖2

σ2 − ‖H‖2
. (8)

Here, ‖H‖2 is the spectral norm of the matrix H. The
condition σ2 > ‖H‖2 is also related to the assumption of
“no subspace swap”, which is crucial for analysis of co-
array MUSIC [4]. We next explicitly characterize the role of
co-array geometry in determining how large σ2 can be by
considering two array geometries: ULA and nested array. Let
L = Nmax+1 and β = (sin(θ1)−sin(θ2))/2 is the normalized
angle distance. Using the fact that the smallest eigenvalue of
AH

US
PAUS is equal to the second largest singular value of

AUSPA
H
US

, we explicitly compute the second largest singular
value of AUSPA

H
US

as:

σ2 =
L(p1 + p2)

2
−

√(
L(p1 − p2)

2

)2

+ p1p2
1− cos(2πLβ)

1− cos(2πβ)
.

(9)
Notice that σ2 grows linearly with L = Nmax +1, when other
quantities are held constant. Recall that for a ULA, Nmax =
P − 1 and for a nested array, Nmax = bP2 c(d

P
2 e + 1) [1].

Therefore, for a nested array, σ2 grows quadratically with the
number of sensors P whereas for a ULA, it only grows linearly
with P . This is illustrated in Fig. 1. In Fig. 2, we plot σ2 as
a function of β which is the normalized separation between
source directions. For most values of the separation between
sources, σ2 for the nested array is significantly larger than that
of a ULA.
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Fig. 1. Dependence of σ2 on the number of antennas P for nested array and
ULA. Here, p1 = p2 = 1 and β = 1
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Fig. 2. Dependence of σ2 on β for nested array and ULA. Here, P = 10
for both arrays and p1 = p2 = 1.

III. CONCLUSION

We studied the effect of sparse array geometry on co-
array signal subspace estimation. For the special case of two
sources, we explicitly characterized the second largest singular
value and how it controls the distance between the true signal
subspace and any estimate. In future, we will use these results
to characterize non-asymptotic performance of sparse array
based DOA estimation algorithms.
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