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Abstract—Metasurfaces offer the potential to realize large 

SWaP (size, weight, and power) reduction over conventional optical 

elements for their ability to achieve comparable functionalities 

in ultrathin geometries. Moreover, metasurfaces designed with 

phase change materials offer the potential to go beyond what 

is achievable by conventional optics by enabling multiple 

functionalities in a single reconfigurable meta-device. However, 

designing a single metasurface geometry that simultaneously 

achieves multiple desired functionalities while meeting all 

bandwidth requirements and fabrication constraints is a very 

challenging problem. Fortunately, this challenge can be overcome 

by the use of state-of-the-art multi-objective optimization 

algorithms which are well-suited for the inverse-design of multi-

functional meta-devices. 
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I. INTRODUCTION

Metasurfaces are the two-dimensional counterparts to 
metamaterials in that that they enable designers to engineer the 
behavior of electromagnetic waves at surfaces and interfaces 
as opposed to volumetric wave manipulation more commonly 
associated with bulk metamaterials [1]. Moreover, due to their 
ability to replicate traditional optical functionality in an ultrathin 
geometry [2], metasurfaces have the potential to disrupt optical 
system design by achieving massive SWaP (size, weight, and 
power) reduction and enabling applications not previously 
possible with heavy conventional systems [3]. To this end, 
phase-gradient metasurfaces have garnered tremendous interest 
for imaging applications due to their ability to exploit the 
generalized form of Snell’s law [4] and bend electromagnetic 
waves in ways not possible with traditional spherical glass 
lenses. Such metasurfaces achieve their behavior through an 
intelligent pattering of nanoantennae (also known as “meta-
atoms”), which are designed to achieve a desired complex 
transmission and/or reflection behavior. For imaging 
applications, the need for highly transmissive applications has 
necessitated that the nanoantennae be composed of dielectric 
materials due to their low loss [5]. However, most dielectric 
metasurface designs typically achieve only a single functionality 
which can limit their ability to supplant conventional lenses in 
the system design process. Meanwhile, phase change materials 
(PCMs) possess tunable dielectric permittivities which can be 
exploited to synthesize reconfigurable metasurface devices such 

as beam-steerers, optical shutters, spectral filters, and adaptive 
focal length lenses [6]–[9]. While PCMs offer the ability to 
realize multi-functional meta-devices, they bring with them a 
significant expansion of the degrees of design freedom available 
to the designer. Consequently, the inclusion of PCMs in the 
system can significantly increase the difficulty of the inverse-
design process making more traditional optimization approaches 
intractable for optical designers. Fortunately, there exists a 
number of optimization techniques for meta-device optimization 
including recent developments such as topology optimization 
[10], deep learning [11], and multi-objective optimizers [12]. In 
fact, multi-objective optimization (MOO) algorithms are the 
natural choice for the inverse-design of multi-functional meta-
devices since all functionalities can be each represented by 
a single objective and simultaneously optimized [13], [14]. 
This paper presents a brief introduction to multi-objective 
optimization and its potential for synthesizing high-performance 
multi-functional PCM-based metasurfaces. 

II. MULTI-FUNCTIONAL META-DEVICE OPTIMZIATION

Unlike traditional single-objective optimizers which only 
find a single optimal solution, MOO algorithms generate a set 
of optimal solutions called the Pareto set. When visualized in 
objective space, these solutions can help designers understand 
the tradeoffs inherent between competing design objectives 
(e.g., size versus efficiency or bandwidth). For reconfigurable 
meta-devices, these objectives can be the desired optical 
functionalities at various states of the PCM (e.g., amorphous 
and crystalline). Fig. 1 presents a hypothetical solution space 
for a reconfigurable PCM-based meta-device. The solid line is 
the Pareto front which is a continuous surface that contains all 
solutions in the Pareto set. In this example, there is a clear 
tradeoff between achievable performance in material states 1 
and 2. While the ideal solution in which the device exhibits the 
maximum theoretical performance in both states is unachievable, 
the MOO algorithm is able to present the user with a range of 
solutions and their tradeoffs from which they can select the 
design that best attains their desired performances. When 
applied to optical metasurface design, the MOO algorithm can 
be assigned a unique cost function per available diffraction 
order allowing the user to simultaneously maximize the 
performance at each order while also providing tradeoffs for 
multi-diffraction order performance. For example, consider the 
metasurface supercell shown in Fig. 2. Due to the supercell 
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periodicity the m = -2, -1, 0, +1, and +2 diffraction orders 
are available to couple into. When paired with PCM materials, 
such a supercell could steer into one order (e.g., +1) in the 
amorphous state and into another order (e.g., +2) in the 
crystalline state. In fact, switching between steering into single 
or multiple orders is possible if the optimizer is given an 
appropriate set of user-defined cost functions. Moreover, the 
supercell can also be optimized to switch between transmission 
and reflection modes which gives the designer tremendous 
flexibility in achieving functionalities that can disrupt 
conventional optical device design. 

Fig. 1. Visualization of a hypothetical multi-objective optimization problem for 
a reconfigurable PCM-based meta-device. 

Fig. 2. Metasurface supercell concept with multiple pathways for the incident 
wave to couple into. Such a supercell is perfectly suited for a MOO algorithm 

as multiple performances can be simultaneously maximized. 

III. FUTURE WORK

Note that, while multi-objective optimization is a generic 
paradigm, there are a number of unique multi-objective 

algorithms designers can employ in their inverse-design 
procedure. Moreover, different algorithms can offer designers 
with unique functionalities or geometrical creation capabilities. 
For example, the Multi-Objective Optimization with TOLerance 
(MOTOL) algorithm can yield designs with robustness as an 
explicit objective [15] while the Multi-Objective Lazy Ant 
Colony (MOLACO) algorithm [16] can synthesize contiguous 
three-dimensional structures to realize true bi-anisotropic 
metamaterial unit cells.   
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