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Abstract—Optical metasurface is a recently emerged paradigm 
for controlling light propagation, which enables implementation 
of ultra-compact optical devices with extended functionalities. 
Nowadays the main challenge in the field is to realize active 
metasurfaces with high quality, high efficiency, and large tuning 
range. Here we present a design approach for constructing a two-
state reconfigurable metalens made of low-loss optical phase-
change material (O-PCM). The metalens design is capable to 
produce diffraction limited focusing, large change in focal length 
(from 1.5 mm to 2mm), and decent focusing efficiency of about 
20% in both states. The proposed design methodology is generic 
and can be easily extended towards constructing metasurfaces, 
which can switch between two or more arbitrary phase maps.  

Keywords—GSST, metasurface, metalens, PCM, phase change 
materials, reconfigurable optics. 

I. INTRODUCTION

Planar periodic arrays of subwavelength antennas, also 
termed as metasurfaces, open up new functionalities for light 
manipulation as well as lead to optical components with 
substantially reduced SWAP-C characteristics. Due to the small 
volumes of used material, metasurfaces are also a suitable 
platform for constructing optical devices which characteristics 
can be modulated or tuned after fabrication. Numerous 
approaches have been proposed to realize metasurface switching 
[1]. However, demonstated methods, especially non-mechanical 
ones, either suffer from low efficiency or have a tiny tuning 
range.  

Recently we developed a new class of chalcogenide glasses, 
Ge-Sb-Se-Te (GSST) [2]. This material is a low-loss optical 
phase change material (O-PCM), which can switch between 
amorphous and crystalline states. In mid infrared the material 
transition causes drastic change in refractive index (∆n > 1) 
while still maintains low losses (k ~ 0.02) in both states. 

II. DESIGN OF A VARIFOCAL METALENS 

The proposed metalens is composed of a patterned 1-µm 
thick GSST film on top of a low-index CaF2 substrate [3]. Fig. 
1 depicts the concept of the metalens operation. When meta-
atoms are in amorphous state, collectively they focus the 
transmitted optical power to a focal spot f1 = 1.5 mm. After 
GSST was transitioned to crystalline state, the primary focal 
spot moves to position f2 = 2mm.  

Fig. 1. (a) Operation principle of a reconfigurable bifocal metalens: in 
amorphous light is primarily focused at a distance f1 = 1.5 mm, and in 
crystalline state – f2 = 1.5 mm. (b) Modulation of focal spot position is driven 
by the change in the metasurface phase-profile shape: blue and red curves 
correspond to amorphous and crystalline states, respectively. 

Metasurface focusing capability is dictated by the phase map 
pattern. For a standard metalens, spatial phase profile is a 
hyperbolic function. By modulating refractive index of the meta-
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atoms, we can change the shape of phase profile, hence switch 
the focal distance (Fig. 1 (b), blue and red curves). 

The final 2D phase maps corresponding to amorphous and 
crystalline states are shown in Figs. 2 (a) and (b), respectively. 
Initially we generated ideal (continuous) phase maps by 
employing Kirchhoff diffraction integral method, then the 
continuous phase maps were discretized into four phase-levels 
of 0°, 90°, 180°, and 270°. For achieving “pixel-by-pixel” 
transitioning between the two discretized phase maps, we 
searched for a group of 16 meta-atoms with specified responses 
in the two states. In a more general case, one would have to 
utilize a library of mn meta-atoms, where m is a phase-map 
discretization level and n is the number of metasurface states, 
in our example, m = 4 and n = 2. To identify the proper library 
of meta-atoms, we ran numerous FDTD simulations (CST 
Microwave Studio) with various shapes (“H”, “I”, “+”) and 
geometrical parameters, and retrieved their phase/amplitude 
responses. Film thicknesses and permittivities of the GSST 
material in both states were measured in an experiment and used 
as a fixed parameter in the simulations. The best meta-atom 
candidates were selected from the database by maximizing 
a figure-of-merit (FOM), which encompasses meta-atom 
transmittance and its phase error (phase deviation from the 
desirable phase value). The final set of 16 meta-atoms is 

presented in Fig. 2 (c). The root-mean-square (RMS) phase 
errors are approximately 0.1 π. By considering these errors, the 
metalens in both states is expected to produce diffraction-limited 
focal spot with a Strehl ratio of > 0.96 and decent focusing 
efficiency exceeding 35%. The metasurface design can be further 
improved by increasing phase discretization level as well as by 
finding better geometries of meta-atoms. For instance, here we 
used a brute-force method to search for suitable meta-atom 
designs, however, with the help of neural network machinery it 
is possible to generate a vast library of unintuitive geometries 
with better performance metrics [3]. 
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Fig. 2. 2D phase maps of the metalens in amorphous and crystalline states. Change of the focal length is associated with pixel-to-pixel phase pattern transformation. 
Each of the 16 meta-atoms serves as a phase-pixel switch. The geometry of meta-atoms was selected to enable the phase transitions between the 4 groups of colors: 
red, yellow, green, and blue, which correspond to the approximate phase-shift values of 0°, 90°, 180°, and 270°.  
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