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Abstract – In this paper, a set of new asymptotic approx-
imate expressions for evaluating the electromagnetic
(EM) fields generated by a vertical magnetic dipole
placed in a dissipative half space is proposed. The lat-
eral wave that guarantees the continuity of the EM fields
at the interface is discussed in detail. Using the spectral
method, the integral expressions of the field components
are obtained. The dominant part is extracted from the lat-
eral wave for large radial distance so that all field com-
ponents in this situation can be approximately expressed
with explicit expressions, which makes the method effi-
cient. Besides, the proposed method has no restric-
tion condition on the parameter choices of different half
spaces, so it can be applied in more general situations.
Some calculation results and comparisons are given to
validate the effectiveness of this extraction method.

Index Terms – Asymptotic approximation, dissipative
medium, lateral wave, spectral method, surface wave,
magnetic dipole.

I. INTRODUCTION
The surface waves have been studied since the time

of Sommerfeld [1]. In 1907, Zenneck discussed the
waves crouching on the intersecting surface of the earth
and the air that possesses the radial symmetry [2]. He
wanted to explain the long-distance radio wave propaga-
tion on the earth by the surface wave over the ground.
The discussion of the Zenneck wave is still going on,
even if the long-distance propagation of the electromag-
netic (EM) waves could be explained by the existence of
the ionosphere nowadays. The study about such waves
has its own meaning since it guarantees the continu-
ity of the EM waves at the boundary of lossy media
such as the earth, the sea water, and the sea crust [3–8].
This kind of surface waves only exist when the source
is placed near the boundary, which means that sources
like plane waves cannot excite such kind of waves [9].
Norton simplified the Sommerfeld’s complicated inte-
gral solution of the surface waves by some approxima-
tions to give explicit expressions of the surface waves

and make it more applicable [7]. On the other hand,
Baños got further results following the work of Som-
merfeld, but those were still too complicated [10]. They
could not give the direct physical insight of the surface
waves and were not convenient for engineering applica-
tions [3]. The surface waves excited by dipoles (electric
and magnetic) placed near the boundary of dissipative
medium are also called the lateral waves. It has many
realistic application scenes such as communication with
submerged submarines. King [3] gave an extensive dis-
cussion of the theory and application of the lateral waves
generated by a vertical electric dipole in the sea. How-
ever, King’s asymptotic approximation method has the
restriction condition on the wave numbers of the two
half spaces that |k1| � |k0|, and this condition is satis-
fied by the relevant parameters of the sea and the air.
Researchers also tried to get numerical solutions of the
lateral waves that travel along the interface of the sea and
the air with the help of computers. However, the numer-
ical methods are time-consuming when calculating the
far fields because the integrands of the integral expres-
sions of the fields oscillate severely, and it needs some
special techniques [11–13]. Nowadays, there are differ-
ent methods that could deal with the EM field problem in
planar stratified media [14–17]. None of these methods
could avoid the evaluation of Sommerfeld integrals and
the evaluation of Sommerfeld integrals can be catego-
rized into three types: the direct numerical method [18–
20], the discrete complex image method [21–23], and the
asymptotic method [3, 10]. The asymptotic method has
the advantage of having high efficiency and being accu-
rate when calculating the EM field in the far region.

In this paper, a novel asymptotic method to extract
the dominant parts of the lateral waves is proposed. This
method stems from the double saddle point method [10].
Nevertheless, no asymptotic series coefficients need to
be specifically calculated like that in [10] due to the pro-
posed extraction technique. All the field components
generated by a vertical magnetic dipole (VMD; it can be
regarded as a model of the closed electrical line carrying
a time-varying electric current loop which supplies the
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Fig. 1. A vertical magnetic dipole in the sea.

electricity to the electronic devices on a ship) in a dissi-
pative half space have explicit expressions by neglecting
the corresponding residual integrals. The fields of other
types of dipoles can be dealt with in a similar way. The
newly proposed method has no restriction condition on
the wavenumbers of different half spaces; so it can be
applied in more general problems than King’s approxi-
mation method.

II. FORMULATION
A. Model

The basic model in this paper is depicted in Figure 1.
Hereinafter, the cylindrical coordinate system is used,
and the three coordinates are (ρ,φ ,z). Due to the radial
symmetry, φ is always assumed to be 0. The lower half
space is sea, and the upper half space is air. The plane
z = 0 is the interface of the two half spaces. A VMD is
placed in the sea at the point (ρ,z) = (0,−d) (d > 0). M
is the dipole moment. Assume that the permittivity and
the permeability of the free space are ε0 and µ0, respec-
tively. The sea has the permittivity of ε1 = 810, the per-
meability of µ1=µ0, and the conductivity of σ1 = 4 S/m.
The air has the permittivity of ε0, the permeability of µ0,
and the conductivity of σ0 = 0 S/m.

B. Integral expressions of the EM fields
Using the spectral method [24], the nonzero field

components in the sea can be expressed as the follow-
ing three integrals:

H1z =
∫

∞

−∞
dkρ

[
eik1z(z+d)+

Re−ik1z(z+d)

]
HVMDH(1)

0

(
kρ ρ

)
,

H1ρ =
∫

∞

−∞
dkρ

[
eik1z(z+d)−
Re−ik1z(z+d)

]
ik1z
kρ

HVMDH(1)
0
′ (

kρ ρ
)
,

E1φ =
∫

∞

−∞
dkρ

[
eik1z(z+d)+

Re−ik1z(z+d)

]
ωµ1
ikρ

HVMDH(1)
0
′ (

kρ ρ
)
.

(1)
The nonzero field components in the air can be expressed
as the following three integrals:

H0z =
∫

∞

−∞
dkρ Teik0zzHVMDH(1)

0

(
kρ ρ

)
,

H0ρ =
∫

∞

−∞
dkρ Teik0zz ik0z

kρ
HVMDH(1)

0
′ (

kρ ρ
)
,

E0φ =
∫

∞

−∞
dkρ Teik0zz ωµ0

ikρ
HVMDH(1)

0
′ (

kρ ρ
)
.

(2)

H1z and H1ρ (H0z and H0ρ ) are the z component and
the ρ component of the magnetic field in the sea (air),

respectively. E1φ (E0φ ) is the φ component of the elec-
trical field in the sea (air). R and T are, respectively,
the reflection coefficient and the transmission coefficient.

kρ is the radial wavenumber. k0z =
(

k2
0− k2

ρ

)1/2
and

k1z =
(

k2
1− k2

ρ

)1/2
. k0 is the wavenumber in the air and

k1 is the wavenumber in the sea. ω is the angular fre-
quency. HVMD is the spectral expression of the VMD
which equals −iMk3

ρ/8πk1z.H
(1)
0 (•)is the zeroth-order

Hankel function of the first kind. The prime means tak-
ing the derivative with respect to ρ .

The tangential components of the EM field should
be continuous at the interface. Let z approaches zero in
equations (1) and (2), and the linear equations of R and T
can be written as eqn (3). Then, R and T can be obtained
by solving eqn (3):



∫
∞

−∞
dkρ

ik1z
kρ

HVMD
[
eik1zd−Re−ik1zd

]
H(1)

0
′ (

kρ ρ
)

=
∫

∞

−∞
dkρ

ik0z
kρ

HVMDT H(1)
0
′ (

kρ ρ
)
,∫

∞

−∞
dkρ

−iωµ1
kρ

HVMD
[
eik1zd +Re−ik1zd

]
H(1)

0
′ (

kρ ρ
)

=
∫

∞

−∞
dkρ

−iωµ0
kρ

HVMDT H(1)
0
′ (

kρ ρ
)
.

(3)
R=

µ0k1z−µ1k0z

µ0k1z +µ1k0z
e2ik1zd ,

T=
2k1zµ1

µ0k1z +µ1k0z
eik1zd .

(4)

All components of the EM fields can then be expressed
by Sommerfeld integrals. Unfortunately, they have no
explicit expressions except for some special occasions,
and their integrands oscillate severely when the radial
distance is large. We will focus on these integrals in the
following subsections.

C. EM fields in the sea
The nonzero EM field components in the sea (−d <

z < 0) are available by substituting eqn (4) into eqn (1).
After some simple rearrangements, each field component
can be decomposed into three parts as follows:

H1z = H in
1z +H im

1z +H lat
1z ,

H1ρ = H in
1ρ

+H im
1ρ

+H lat
1ρ
,

E1φ = E in
1φ

+E im
1φ

+E lat
1φ
.

(5)

The superscript “in” means the direct wave, “im” means
the image wave, and “lat” means the lateral wave. They
are defined by the following equations:

H in
1z =−i M

4π

∫
∞

0 dkρ

k3
ρ

k1z
eik1z(z+d)J0

(
kρ ρ

)
,

H im
1z = i M

4π

∫
∞

0 dkρ

k3
ρ

k1z
eik1z(d−z)J0

(
kρ ρ

)
,

H lat
1z =−i M

2π

∫
∞

0 dkρ

k3
ρ

k1z+k0z
eik1z(d−z)J0

(
kρ ρ

)
.

(6)



1395 ACES JOURNAL, Vol. 36, No. 11, November 2021


H in

1ρ
=− M

4π

∫
∞

0 dkρ k2
ρ eik1z(z+d)J1

(
kρ ρ

)
,

H im
1ρ

=− M
4π

∫
∞

0 dkρ k2
ρ eik1z(d−z)J1

(
kρ ρ

)
,

H lat
1ρ

= M
2π

∫
∞

0 dkρ

k2
ρ k1z

k1z+k0z
eik1z(d−z)J1

(
kρ ρ

)
.

(7)


E in

1φ
= ωµ1M

4π

∫
∞

0 dkρ

k2
ρ

k1z
eik1z(d+z)J1

(
kρ ρ

)
,

E im
1φ

=−ωµ1M
4π

∫
∞

0 dkρ

k2
ρ

k1z
eik1z(d−z)J1

(
kρ ρ

)
,

E lat
1φ

= ωµ1M
2π

∫
∞

0 dkρ

k2
ρ

k1z+k0z
eik1z(d−z)J1

(
kρ ρ

)
.

(8)

All components of the direct wave and the image wave
have explicit expressions according to Appendix A of
[3], so only the lateral wave needs to be dealt with.

For the sake of simplicity, some notations are intro-
duced as follows:

F1z (ρ,x) =
∫

∞

0
dkρ

k3
ρ

k1z + k0z
eik1zxJ0

(
kρ ρ

)
,

F1ρ (ρ,x) =
∫

∞

0
dkρ

k2
ρ k1z

k1z + k0z
eik1zxJ1

(
kρ ρ

)
,

F1φ (ρ,x) =
∫

∞

0
dkρ

k2
ρ

k1z + k0z
eik1zxJ1

(
kρ ρ

)
.

(9)

Now, the lateral wave in the sea can be written as

H lat
1z =

M
2πi

F1z (ρ,d− z) ,

H lat
1ρ =

M
2π

F1ρ (ρ,d− z) ,

E lat
1φ =

ωµ1M
2π

F1φ (ρ,d− z) .

(10)

Take F1z (ρ,x) as an example. It can be rearranged as

F1z (ρ,x) =

∫
∞

0 dkρ k3
ρ (k1z− k0z)eik1zxJ0

(
kρ ρ

)
k2

1− k2
0

. (11)

The integral at the right-hand side can be further trans-
formed to∫

∞

0 dkρ k3
ρ (k1z− k0z)eik1zxJ0

(
kρ ρ

)
=
[
I1 (ρ,x,k1)− eix

√
k2

1−k2
0 I1 (ρ,x,k0)

]
−
∫

∞

0 dkρ k3
ρ k0z

[
eik1zx− ei

(
k0z+
√

k2
1−k2

0

)
x
]

J0
(
kρ ρ

)
.

(12)
I1(ρ,x,k) is an auxiliary integral. It is defined in the
appendix together with all other auxiliary integrals that
would appear in this paper. Denote that

Fe
1z(ρ,x) =

1
k2

1− k2
0
×[

I1 (ρ,x,k1)− eix
√

k2
1−k2

0 I1 (ρ,x,k0)
]
,

Fr
1z(ρ,x) =

1
k2

1− k2
0
×∫

∞

0
dkρ k3

ρ k0z

[
ei
(

k0z+
√

k2
1−k2

0

)
x− eik1zx

]
J0
(
kρ ρ

)
.

(13)

Hence, F1z(ρ,x) is written as the sum of two parts
F1z (ρ,x) = Fe

1z (ρ,x)+Fr
1z (ρ,x) . (14)

Fe
1z (ρ,x) is extracted from the original integral which has

an explicit expression and Fr
1z (ρ,x) is the corresponding

Fig. 2. The kρ plane.

residual integral. Hereinafter, all the functions with a
superscript “e” mean that they have explicit expressions.
Correspondingly, all the functions with a superscript “r”
mean the residual integrals. It seems that Fr

1z (ρ,x) is
more difficult to handle than the original Sommerfeld
integral at first glance. However, it can be verified that
Fr

1z (ρ,x) could be neglected in the lateral wave when the
radial distance is large.

Consider the integral in the complex plane shown in
Figure 2. The horizontal axis is the real axis, while the
vertical axis is the image axis.

Extending the integration path to the whole real axis
and using the Cauchy theorem, the integration path is
deformed to C0 and C1 as follows:
1
2
(
k2

1− k2
0
)

Fr
1z (ρ,x)

=
∫

∞

−∞

dkρ k3
ρ k0z

[
ei
(

k0z+
√

k2
1−k2

0

)
x− eik1zx

]
H(1)

0

(
kρ ρ

)
= ∫

C0+C1

dkρ k3
ρ k0z

[
ei
(

k0z+
√

k2
1−k2

0

)
x− eik1zx

]
H(1)

0

(
kρ ρ

)
.

(15)

Denote f
(
kρ

)
=k3

ρ k0z

[
ei
(

k0z+
√

k2
1−k2

0

)
x− eik1zx

]
H(1)

0(
kρ ρ

)
, and it has five branch points at kρ = 0 ±k0 ±k1.

The branch points and the related branch cuts are also
depicted in Figure 2. The branch cuts are parallel to
the image axis. While passing the branch points, the
integration path should have appropriate indentations as
shown in Figure 2.

Using the double saddle point method [10], the inte-
grals along the path C0 and C1 can be expanded with
asymptotic series, respectively∫

C0

f
(
kρ

)
dkρ ∼ eik0ρ

(
A3

ρ3 +
A4

ρ4 +
A5

ρ5 + · · ·
)
,∫

C1

f
(
kρ

)
dkρ ∼ eik1ρ

(
B2

ρ2 +
B3

ρ3 +
B4

ρ4 + · · ·
)
.

(16)

An and Bn are constants determined by the Taylor series
of f

(
kρ

)
at kρ = k0 and kρ = k1. For example, the A3
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term is

A3 =
4k2

0
iπ

4ei
√

k2
1−k2

0x−
3k2

0x2

2
−

3ik2
0x

2
√

k2
1− k2

0

−4

 .
(17)

The coefficients are lengthy but easy to be obtained by
the commercial software Mathematica. What should be
emphasized is that the exact forms of the coefficients An
and Bn are not important in the realistic approximation
because the residual integrals are to be neglected. The
series is just used while proving the effectiveness of our
method.

Since Im(k1) > 0, eik1ρ = o(1/rn) (n ∈ Z+), it can
be deduced from eqn (16) that only the integral on the
path C0 should be taken into consideration as ρ → ∞.
Therefore,∫

C0+C1

f
(
kρ

)
dkρ ∼ eik0ρ

(
A3

ρ3 +
A4

ρ4 +
A5

ρ5 + · · ·
)
.

(18)
Combining eqn (15) and (18), the asymptotic series of
Fr

1z (ρ,x) can be written as

Fr
1z (ρ,x)∼

ei
(

x
√

k2
1−k2

0+k0ρ

)
2
(
k2

1− k2
0

) (
A3

ρ3 +
A4

ρ4 +
A5

ρ5 + · · ·
)
.

(19)
According to eqn (14)–(19), the relative error er between
F1z (ρ,x) and Fe

1z (ρ,x) is found to be

er=
F1z (ρ,x)−Fe

1z (ρ,x)
F1z (ρ,x)

=
o
(
1/ρ2

)
o(1/ρ2)+o(1/ρ2)+A/ρ2 = o(1) .

(20)

The above equation means er→ 0 as ρ→∞, so Fe
1z (ρ,x)

is a good approximation of F1z (ρ,x). In other words,
Fr

1z (ρ,x) could be neglected in F1z (ρ,x) which confirms
our previous observation.

It can be checked from (13) and (19) that the low-
est negative order term 1/ρ2 is extracted and included in
the explicit expression Fe

1z (ρ,x), making it a more accu-
rate approximate expression for the lateral wave at large
radial distance. Fρ (ρ,z) and Fφ (ρ,x) can be dealt with
in a similar way

Fρ (ρ,x) = Fe
1ρ
(ρ,x)+Fr

1ρ
(ρ,x) ,

Fφ (ρ,x) = Fe
1φ
(ρ,x)+Fr

1φ
(ρ,x) . (21)

Fe
1ρ
(ρ,x), Fe

1φ
(ρ,x), Fr

1ρ
(ρ,x), and Fr

1φ
(ρ,x) are defined

by eqn (22) and (23). Due to the term-wise differentiable
property of the asymptotic series of the residual integrals
[10], it can be proved that Fr

1ρ
(ρ,x) and Fr

1φ
(ρ,x) could

also be neglected when ρ is large enough.



Fe
1ρ
(ρ,x) = ρ

2i(k2
1−k2

0)

× ∂

∂x

[
I2 (ρ,x,k1)− ei

√
k2

1−k2
0xI2 (ρ,x,k0)

]
,

Fe
1φ
(ρ,x) = 1

k2
1−k2

0

×
[
I2 (ρ,x,k1)− ei

√
k2

1−k2
0xI2 (ρ,x,k0)

]
.

(22)

Fr
1ρ
(ρ,x) = 1

i(k2
1−k2

0)
× ∂ 2

∂x∂ρ

∫
∞

0 dkρ kρ k0z[
eik1zx− ei

(
k0z+
√

k2
1−k2

0

)
x
]

J0
(
kρ ρ

)
,

Fr
1φ
(ρ,x) = 1

k2
1−k2

0
× ∂

∂ρ

∫
∞

0 dkρ kρ k0z[
eik1zx− ei

(
k0z+
√

k2
1−k2

0

)
x
]

J0
(
kρ ρ

)
.

(23)

Hence, the explicit expressions of the lateral waves
in the sea are

H lat
1z =

M
2πi

Fe
1z (ρ,d− z) ,

H lat
1ρ =

M
2π

Fe
1ρ (ρ,d− z) ,

E lat
1φ =

ωµ1M
2π

Fe
1φ (ρ,d− z) .

(24)

Thus, combining eqn (5) and (24), the EM field in the
sea can be expressed with explicit expressions.

D. EM fields in the air
The nonzero EM field components in the air (z > 0)

can be expressed as

H0z =
M

2πi

∫
∞

0
dkρ

k3
ρ

k1z + k0z
eik1zdeik0zzJ0

(
kρ ρ

)
,

H0ρ =−M
2π

∫
∞

0
dkρ

k0zk2
ρ

k1z + k0z
eik1zdeik0zzJ1

(
kρ ρ

)
,

E0φ =
ωµ0M

2π

∫
∞

0
dkρ

k2
ρ

k1z + k0z
eik1zdeik0zzJ1

(
kρ ρ

)
.

(25)
Conventionally, there is no need to decompose the

components of the EM fields in the air like in the sea.
The components themselves constitute the lateral wave
in the air. Under this circumstance, the problem is a lit-
tle different from that in the sea because the exponential
factors contain both k1z and k0z. Nevertheless, the core
idea can be applied to extract the dominant term for the
lateral wave from the integrals and abandon the residual
integrals.

Denote that

F0z (ρ,z,d) =
∫

∞

0
dkρ

k3
ρ

k1z + k0z
eik1zdeik0zzJ0

(
kρ ρ

)
,

F0ρ (ρ,z,d) =
∫

∞

0
dkρ

k0zk2
ρ

k1z + k0z
eik1zdeik0zzJ1

(
kρ ρ

)
,

F0φ (ρ,z,d) =
∫

∞

0
dkρ

k2
ρ

k1z + k0z
eik1zdeik0zzJ1

(
kρ ρ

)
.

(26)
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Now, the lateral wave in the air can be written as

H0z =
M

2πi
F0z (ρ,z,d) ,

H0ρ =
M
2π

F0ρ (ρ,z,d) ,

E0φ =
Mωµ0

2π
F0φ (ρ,z,d) .

(27)

Recalling eqn (18), the integral on C1 plays an
insignificant role in the lateral wave when ρ is large. To
extract the dominant part from the integral expression of
the lateral wave, we only need to make the lowest nega-
tive power term of the asymptotic series of the integrals
on the integration path C0 vanish like (16). To achieve
this, the extraction is performed as follows:

F0z (ρ,z,d)=Fe
0z (ρ,z,d)+Fr

0z (ρ,z,d) ,

F0ρ (ρ,z,d)=Fe
0ρ (ρ,z,d)+Fr

0ρ (ρ,z,d) ,

F0φ (ρ,z,d)=Fe
0φ (ρ,z,d)+Fr

0φ (ρ,z,d) .

(28)

Related functions in eqn (28) are defined in eqn (29)
and (30). It can be verified that the lowest negative order
terms vanish in the asymptotic series of the residual inte-
grals. Hence, for large radial distance, all the residual
integrals Fr

0z (ρ,z,d), Fr
0ρ
(ρ,z,d), and Fr

0φ
(ρ,z,d) can

be neglected, and the EM fields in the air can be repre-
sented by the explicit expressions as shown in eqn (31).



Fe
0z (ρ,z,d)=

1
i(k2

1−k2
0)

(
∂

∂d −
∂

∂ z

)
[
I3 (ρ,d,k1)+ ei

√
k2

1−k2
0dI3 (ρ,z,k0)

]
,

Fe
0ρ
(ρ,z,d) = 1

k2
1−k2

0

∂

∂ z

(
∂

∂d −
∂

∂ z

)
∂

∂ρ[
I4 (ρ,d,k1)+ ei

√
k2

1−k2
0dI4 (ρ,z,k0)

]
,

Fe
0φ
(ρ,z,d) = i

(k2
1−k2

0)

(
∂

∂d −
∂

∂ z

)
∂

∂ρ[
I4 (ρ,d,k1)+ ei

√
k2

1−k2
0dI4 (ρ,z,k0)

]
.

(29)



Fr
0z (ρ,z,d)=

1
i(k2

1−k2
0)

(
∂

∂d −
∂

∂ z

)∫
∞

0 dkρ k3
ρ(

eik1zd− ei
√

k2
1−k2

0d
)(

eik0zz−1
)

J0
(
kρ ρ

)
,

Fr
0ρ
(ρ,z,d) = 1

k2
1−k2

0

∂

∂ z

(
∂

∂d −
∂

∂ z

)
∂

∂ρ

∫
∞

0 dkρ kρ(
eik1zd− ei

√
k2

1−k2
0d
)(

eik0zz−1
)

J0
(
kρ ρ

)
,

Fr
0φ
(ρ,z,d) = i

(k2
1−k2

0)

(
∂

∂d −
∂

∂ z

)
∂

∂ρ

∫
∞

0 dkρ kρ(
eik1zd− ei

√
k2

1−k2
0d
)(

eik0zz−1
)

J0
(
kρ ρ

)
.

(30)

H0z =
M

2πi
Fe

0z (ρ,z,d) ,

H0ρ =
M
2π

Fe
0ρ (ρ,z,d) ,

E0φ =
Mωµ0

2π
Fe

0φ (ρ,z,d) .

(31)

III. RESULTS
In this section, some numerical results and compar-

isons are given. First, the VMD is placed in the sea at
d = 10m and the working frequency is f = 50 Hz. The
lateral waves at z = −0.5 m and z = 0.5 m are consid-
ered. The results are compared with King’s results and
they are in good agreement. Then, the EM fields are
calculated when the restriction condition |k1| � |k0| is
not satisfied. It can be seen from the numerical results
that King’s approximation method could not give accu-
rate results in this situation. Nevertheless, our method
could still give the accurate results.

Now consider the VMD placed in the sea at first.
Figure 3 shows the comparison of the integrands of

H lat
1z at different radial distances. It can be observed that

(a)

(b)

Fig. 3. The comparison of the integrands at (a) ρ = 100
m and (b) ρ = 1000 m.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. The comparison of the extracted parts and the
residual integrals: (a) H lat

1z , (b) H lat
0z , (c) H lat

1ρ
, (b) H lat

0ρ
, (e)

E lat
1φ

, and (f) E lat
0φ

.

(a)

(b)

Fig. 5. The comparison of the results within ρ < 1000 m
of our method and King’s method. (a) Field in the sea.
(b) Field in the air.

the integrands possess rapid oscillations, and the oscilla-
tion rate increases with ρ . Therefore, the direct numer-
ical evaluation of the integral is inefficient when ρ is
large.

In Figure 4, the solid curves represent the modu-
lus of the extracted parts of the field components and
the dashed lines represent the corresponding counterpart
of residual parts. When ρ exceeds 200 m, the residual
integrals become negligible compared with the extracted
explicit parts.

The results of our method are also compared with
the results obtained by the method of King (refer to
Appendix D of [3]). Figure 5 shows the comparison in
the range ρ < 1000 m. The solid lines are the results
of our method, and the symbols are the results of King’s
method. While ρ is larger than about 200 m, the results
of the two methods match very well because the require-
ment of |k1| � |k0| for King’s method is satisfied in this
example.

Figure 6 shows the comparison within ρ < 100km.
It is known that the traditional numerical methods

(a)

(b)

Fig. 6. The comparison of the results within ρ < 100 km
of our method and King’s method. (a) Field in the sea.
(b) Field in the air.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. The comparison of the results obtained by differ-
ent methods: (a) H lat

1z , (b) H lat
0z , (c) H lat

1ρ
, (b) H lat

0ρ
, (e) E lat

1φ
,

and (f) E lat
0φ

.

become very inefficient when ρ reaches such a large dis-
tance.

Next consider the problem when the restriction con-
dition |k1| � |k0| no longer holds. Specifically, the con-
ductivity of the lower half space is 1×10−6 S/m and the
permittivity of the upper half space is 200ε0 now. The
working frequency f is 5.2 kHz and d = 500 m. The
other parameters remain the same.

Figure 7 shows the comparison of the results of our
method, King’s method, and the direct numerical inte-
gration. It can be seen from the figure that the results
of our method match very well with the direct numerical
integration results, which are made converged with high
accuracy but very time-consuming. However, the field
components obtained by King’s method could not give
accurate results as shown in Figure 7.

IV. CONCLUSION
In this paper, a method for efficiently evaluating the

fields of a VMD in a dissipative half space is proposed.
Dominant explicit formulae for nonzero field compo-
nents are extracted from their integral expressions. The
residual integrals are negligible for large radial distance.
Since no numerical integration is needed, this method

is efficient for calculating the far fields. Besides, it has
no restriction on the parameters of the media; so it has
broader application scope than the King’s method when
dealing with different problems.
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