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Abstract – Uncertainty analysis plays a significant role
in electromagnetic compatibility (EMC) simulation, but
suffers from convergence determination thereby reduc-
ing simulation accuracy and computational efficiency. In
this paper, an improved mean equivalent area method is
proposed to enhance calculation accuracy. It shows that,
using a benchmark example, the proposed method suc-
cessfully achieves the convergence determination of the
stochastic reduced order models (SROMs), and realizes
further promotion of uncertainty analysis method.

Index Terms – EMC simulation, uncertainty analysis,
convergence determination, improved mean equivalent
area method, stochastic reduced order models

I. INTRODUCTION
In order to accurately describe the randomness and

the uncertainty in the actual engineering environment,
the uncertainty simulation methods have received exten-
sive attention in the field of electromagnetic compatibil-
ity (EMC) in recent years [1].

Among the uncertainty analysis methods, the Monte
Carlo method (MCM) is the most commonly used. The
MCM uses a large number of sampling points to simulate
the randomness of the simulation input, and determinis-
tic EMC simulation is performed at each sampling point
to obtain the uncertainty analysis results [2–4]. However,
the computational efficiency of the MCM is extremely
low, which makes it gradually lose competitiveness.

Since 2013, the stochastic Galerkin method (SGM)
and the stochastic collocation method (SCM) of the gen-
eralized polynomial chaos theory have been successfully
applied in EMC simulation. They use chaotic polyno-
mials under a specific order to expand the uncertainty
output, and then obtain the uncertainty analysis results
through the Galerkin projection technology or the mul-
tidimensional Lagrange interpolation technology [5–8].

It is proved that the calculation accuracy of the SGM
and the SCM is at the same level as the MCM, but
their calculation efficiency is significantly higher than
the MCM. However, when the number of random vari-
ables increases, the calculation time of the SGM and the
SCM will increase exponentially, which is the so-called
“dimension disaster” problem.

In 2016, the stochastic reduced order models
(SROMs) have been proposed, which can completely
avoid the emergence of the “dimension disaster” prob-
lem. Using the optimized algorithm for clustering, the
SROM can select several feature points to represent sam-
pling points under large number. Deterministic EMC
simulation at each feature point is performed, and the
final uncertainty analysis results can be obtained. The
limitation of the SROM is that there is no way to judge
whether the algorithm has converged, so the exact num-
ber of feature points cannot be determined [9].

In fact, for each uncertainty analysis method, how
to accurately judge its convergence is a key issue that
needs to be solved urgently. In other words, judging
convergence is an indispensable step to determine the
number of sampling points of the MCM, the order of
chaotic polynomials of the SGM and the SCM, or the
number of feature points of the SROM. Obviously, if
the algorithm does not converge, there will be errors
in the uncertainty analysis results. On the contrary, if
an excessively large number of sampling points, chaotic
polynomial orders or feature points are used in order
to ensure convergence, it will be a waste of computing
resources.

In order to solve the convergence determination
problem of uncertainty simulation, the mean equivalent
area method (MEAM) is proposed [10]. The MEAM
draws on the idea of effectiveness evaluation in the fea-
ture selective validation (FSV) method, and applies the
common area between the probability density curves of
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standard data and simulation data as the evaluation cri-
terion. The effectiveness of the simulation results under
adjacent orders or adjacent points is evaluated. When
the evaluation result is “excellent” (the common area
is greater than 0.95), it indicates that the algorithm has
converged.

However, in order to achieve the purpose of stan-
dardization and generalization, the conventional MEAM
uses a uniform distribution curve to replace the original
probability density curve. Therefore, many details are
ignored in calculating the common area, which reduces
the accuracy of the algorithm.

This paper proposes the improved mean equivalent
area method (Improved MEAM), which can accurately
calculate the common area under the premise of ensuring
standardization and generalization. Meanwhile, a con-
vergence determination method based on the proposed
method is given for the SROM, in order to determine the
number of feature points.

The structure of this paper is as follows. The
detailed description of the improved MEAM is provided
in Section II. Section III offers the calculation accu-
racy verification of the improved MEAM. The conver-
gence determination of the SROM is shown in Section
IV. Discussion about convergence determination method
of MCM, SGM, and SCM is given in Section V. Section
VI presents the conclusion part of this paper.

II. IMPROVED MEAN EQUIVALENT AREA
METHOD

Uncertainty analysis results are usually presented in
the form of sampling points. Applying the statistical cal-
culation, the expected value, the standard deviation, the
worst-case estimate, or the probability density curve can
be obtained. Obviously, the probability density curve is
the most important result, because it can retain all the
information of the uncertainty analysis. According to
this feature, the conventional MEAM quantifies the dif-
ference between the simulation result and standard data
by calculating the value of the common area surrounded
by their probability density curves, in order to judge the
accuracy of the simulation result. At the same time, in
order to meet the needs of standardization and scala-
bility, the conventional MEAM uses a uniform distribu-
tion curve to approximate the original probability density
curve, and converts the calculation of the common area
into the calculation of the rectangular area. This approx-
imation ignores some details of the original PDF curve,
which will bring calculation errors.

In the improved MEAM, N rectangles are used to
approximate the probability density curve, aiming to
ensure that the premise of standardization preserves the
details of the probability density curve as much as pos-
sible, as shown in Figure 1. The specific steps of the

Fig. 1. Approximation of probability density curve.

approximate process are as follows:

1. Calculate the maximum value xmax and the mini-
mum value xmin of M sampling points.

2. Take N–1 points at equal intervals between xmin and
xmax to form N intervals, for example, N = 5 in
Figure 1.

3. Count the number of sampling points in each inter-
val Mi, and calculate the percentagePi =

Mi
M .

4. Each rectangle is regarded as a uniform distribution
with a total probability of Pi.

Both standard data and simulation results can be
transformed into N rectangles, as shown in Figure 2.
The calculation of the common area between the prob-
ability density curves is transformed into the calculation
of the common area between the rectangles. According
to reference [10], conventional MEAM can calculate the
common area of two rectangles, so the common area cal-
culation of the improved MEAM can be given by the fol-
lowing formula:

Areafinal =
N

∑
i=1

N

∑
j=1

AreaMEAM(Rsta
i ,Rsim

j ), (1)

where Rsta
i represents the ith rectangle of the standard

data, and Rsim
j represents the jth rectangle of the simula-

tion result. AreaMEAM indicates that the common area
of two rectangles is calculated using the conventional
MEAM, its calculation formula is as follows:

AreaMEAM(Rsta
i ,Rsim

j ) = bM×hM, (2)

where bM represents the bottom of the rectangular com-
mon area, and hM is the height of the rectangular
common area. The calculation formula for the height
hM is:

hM = min{ 1
2
√

3σ sta
i

,
1

2
√

3σ sim
j
}, (3)

where σ sta
i is the standard deviation of the uniform

distribution represented by Rsta
i , and σ sim

j is the stan-
dard deviation of the uniform distribution represented
by Rsim

j .
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Fig. 2. The common area in the improved MEAM.

Table 1: Calculation results of bM

Condition bM
1 mx,1 < mx,2 < mx,3 < mx,4 0
2 mx,1 < mx,3 < mx,2 < mx,4 mx,2−mx,3
3 mx,1 < mx,3 < mx,4 < mx,2 mx,4−mx,3
4 mx,3 < mx,1 < mx,2 < mx,4 mx,2−mx,1
5 mx,3 < mx,1 < mx,4 < mx,2 mx,4−mx,1
6 mx,3 < mx,4 < mx,1 < mx,2 0

The bottom bM is determined by Table 1. The inter-
mediate coefficient expression is:

mx,1 = msta
i −
√

3σ sta
i

mx,2 = msta
i +
√

3σ sta
i

mx,3 = msim
j −

√
3σ sim

j
mx,4 = msim

j +
√

3σ sim
j

, (4)

where msta
i is the average value of the uniform distribu-

tion represented by Rsta
i , and msim

j is the average value of
the uniform distribution represented by Rsim

j .
Obviously, N2 times conventional MEAM opera-

tions are required in one improved MEAM operation.

III. ACCURACY VERIFICATION OF THE
IMPROVED MEAN EQUIVALENT AREA

METHOD
In order to verify the accuracy of the improved

MEAM, a calculation example of the common area prob-
lem is given. In calculation example, the probability den-
sity function of standard data is supposed as:

PDF(x) =
{ 3

8 [−2x2 +8x−6], 1≤ x≤ 3
0, x is other value

. (5)

The probability density function of the simulation result
is given as:

PDF(x) =


3
8 [−2(x− k)2 +8(x− k)−6],

1+ k ≤ x≤ 3+ k
0, x is other value

, (6)

where the value of k can be changed to generate differ-
ent calculation examples. In this section, the value of k
ranges from 0.02 to 1.5, and sampling points are taken
every 0.02, for a total of 75 examples. Figure 3 shows
the calculation example when k is 0.2.

Fig. 3. Calculation example when k is 0.2.

It is worth noting that since the simulation result and
the standard data are in the form of definite probabil-
ity density functions, the real common area value can be
obtained by directly performing integral operations.

In order to apply the conventional MEAM and the
improved MEAM, the probability density function needs
to be converted into the form of sampling points. Take
the simulation result as an example, the distribution func-
tion is calculated first, which is shown as:

CDF(x) =


0, x≤ 1+ k
− 1

4 (x− k)3 + 3
2 (x− k)2− 9

4 (x− k)+1
1+ k ≤ x≤ 3+ k

1, x≥ 3+ k

.

(7)
After sampling the interval [0,1] according to the
uniform distribution, the following equation can be
solved:

CDF(x) =U [0,1] , 1+ k ≤ x≤ 3+ k. (8)
The set of solution results becomes the sampling points
that characterize the probability density function. Simi-
larly, eqn. (5) can also be transformed into the form of
sampling points.

Using the conventional MEAM and the improved
MEAM to calculate the common area of 75 examples,
the results are shown in Figure 4. Among them, the black
solid line represents the standard data, and the result is
obtained by integrating the probability density function.
The blue dashed line is the calculation result of the con-
ventional MEAM, and the red dashed line is the calcula-
tion result of the improved MEAM.

Compared with standard data, Figure 5 shows the
calculation errors of the conventional MEAM and the
improved MEAM respectively.

Through calculation, the average error of the con-
ventional MEAM is 12.94%, and that of the improved
MEAM is 4.48%. Therefore, it is clearly proved that
the proposed method has a greater improvement in the
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Fig. 4. Accuracy comparison of the conventional MEAM
and the improved MEAM.

Fig. 5. Error results of the conventional MEAM and the
improved MEAM.

accuracy of calculating the common area than the con-
ventional MEAM.

IV. CONVERGENCE DETERMINATION OF
THE SROM

In this section, the improved MEAM is applied to
judge the convergence of SROM, which is a popular
uncertainty analysis method. The convergence decision
criterion is as follows:

1. SROM is used to calculate the uncertainty analysis
results when the number of feature points is 2 and
22, and the common area value of the two results is
obtained through the improved MEAM. If the area
value is greater than 0.95, go to step 3., otherwise
go to step 2.

2. SROM is applied to continue to calculate the uncer-
tainty analysis result when the number of feature
points is 23, and calculate the common area value

Fig. 6. The uncertainty analysis problem in the
reference [8].

when the feature points are 22 and 23. If it is greater
than 0.95, enter step 3., otherwise continue to cal-
culate the uncertainty analysis result when the num-
ber of feature points is 24, until the common area
value is greater than 0.95 when the feature points
are 2n−1and 2n.

3. When the number of feature points is 2n, the algo-
rithm is judged to be convergent. Its corresponding
uncertainty analysis result is the result of SROM.

To verify the validity of the criterion, a typical
uncertainty analysis problem in EMC simulation is pre-
sented in this section. The problem is the crosstalk cal-
culation of the cables with the wires which are random
in height, and this example is mentioned in the refer-
ence [8]. The parameters of the problem are shown
in Figure 6. The amplitude of the excitation source is
1V , the radius of the radiating conductor and the dis-
turbed conductor are both 0.1mm, the horizontal distance
between the two conductors is 0.03m, the length of the
two conductors are both 0.5m. All the loads are 50Ω.

The heights of the two conductors are uncertain,
and the height of the radiating conductor h1 obeys
uniform distributionU [0.04,0.05]mwhile the height of
the disturbed conductor h2 obeys uniform distribution
U [0.025, 0.035]m. Using a random variable model to
describe this uncertainty factor, the following relation-
ship can be obtained:

h1 = 0.045+0.005×ξ1, (9)
h2 = 0.03+0.005×ξ2, (10)

where ξ1andξ2 both stand for the uniform distribution
[−1, 1].

For the SROM, the random variables ξ1 and ξ2 are
sampled first, and a fixed number of feature points are
selected. Then, single deterministic EMC simulation is
performed on each feature point, and the final uncer-
tainty simulation result can be obtained. More details
about the SROM can be found in reference [9]. The
uncertainty analysis is realized respectively when the
number of feature points is 2, 4, 8, and 16. The number
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Table 2: Convergence determination process of the
SROM
Number of Feature Points The Common Area Value

2 times and 4 times 0.5337
4 times and 8 times 0.7235

8 times and 16 times 0.9606

of feature points represents the number of deterministic
simulations required. Therefore, the smaller the number
of feature points, the shorter the simulation time. Using
the improved MEAM, Table 2 shows the convergence
determination process of the SROM.

According to Table 2, the number of convergence
feature points of SROM in this example is 16. It is worth
noting that only two feature points will not be used in
actual simulation process. In this article, this selection is
to better show the convergence process of the SROM.

In uncertainty analysis field, the results of the MCM
are usually regarded as the standard answer. This paper
also compares the SROM results under different times
with the MCM results, as shown in Figure 7 and Figure 8.
Figure 7 presents the expectation results, and Figure 8
gives the standard deviation results.

In Figure 7, except two times SROM, the other
results are close to the MCM results. It shows that when
the number of feature points is 4, the estimate of expec-
tation is accurate. In contrast to Figure 8, the SROM
result is accurate only when the number of feature points
is greater than 8. Obviously, when the feature point is 8,
the algorithm is close to convergence. However, in order
to ensure that the SROM completely converges, it is con-
sidered that 16 is the number of true convergent feature
points.

In order to further describe the convergence pro-
cess, the FSV method is introduced to quantify the differ-
ence between the MCM results and the SROM results in

Fig. 7. Expectation results of the SROM.

Fig. 8. Standard deviation results of the SROM.

Table 3: FSV results of the SROM under different times
Expectation Standard

Deviation
MCM and 2 times

SROM 0.0492 0.7615

MCM and 4 times
SROM 0.0003 0.4763

MCM and 8 times
SROM 0.0017 0.0205

MCM and 16 times
SROM 0.0005 0.0144

Figure 7 and Figure 8, as shown in Table 3. More details
about the FSV method can be obtained in the references
[11] and [12].

According to the FSV results in Table 3, it is clearly
shown that 16 is the number of convergent feature points.

In this example, the simulation time of the MCM
is 642.57 s, while that of the SROM is only 1.68 s. It
proves the unique advantage of the SROM in computa-
tional efficiency.

In summary, the improved MEAM can accurately
determine the convergence of the SROM.

V. DISCUSSION
A. Convergence decision of the MCM

The number of basic sampling points N is deter-
mined first, and usually N is several hundred times.
Then, the uncertainty analysis is respectively performed
by using the MCM when the number of sampling points
is N and 2N. Based on the improved MEAM, the com-
mon area value between the uncertainty analysis results
is calculated. If the area value is greater than 0.95, 2N
is the number of convergent sampling points. Otherwise,
MCM must be used for simulation under the sampling
points 22N, 23N and so on, until the common area value



1451 ACES JOURNAL, Vol. 36, No. 11, November 2021

between the uncertainty analysis results of adjacent sam-
pling points is greater than 0.95.

In the calculation example of Section IV, N is
selected as 800, and the algorithm has converged when
the number of sampling points is 6400.

B. Convergence decision of the SGM and the SCM
Whether it is the SGM or the SCM, the uncertainty

analysis results are calculated first when the chaotic
polynomial orders are 2 and 3. The improved MEAM
is applied to calculate the common area value between
adjacent order results. If the area value is greater than
0.95, the convergence order is 3. Otherwise, the uncer-
tainty analysis result must continue to calculate with
chaotic polynomial order 4, 5, and so on, until the com-
mon area value between adjacent order results is greater
than 0.95.

VI. CONCLUSION
In this paper, the improved MEAM is proposed

to solve the problem of convergence determination of
uncertainty analysis methods in the EMC simulation
field. It is certified that the proposed method not only
retains the advantages of the conventional MEAM in
standardization and generalization, but also calculates
the common area values more accurately. Using a cal-
culation example in published reference, the improved
MEAM successfully achieves the convergence deter-
mination of the SROM. Finally, the promotion of the
improved MEAM in convergence determination for three
famous uncertainty analysis methods (MCM, SGM, and
SCM) is also described.
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