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Abstract – Many design optimization problems have
high-scale problems that require the use of a fast, effi-
cient, accurate, and reliable model. Recently, artificial-
intelligence-based models have been used in the field
of microwave engineering to model complex microwave
stages. Here, an eight-layer symmetrical microstrip low-
pass filter (LPF) is modeled using a multi-layer per-
ceptron (MLP) with reduced data with Latin hypercube
sampling. It is used to obtain target−test relationships in
the MLP model along the frequency band whose electri-
cal length in each layer determines the performance of
the microstrip filter. Electrical length lower and upper
limits were preferred in the widest range. The study
presents the design and analysis of a non-uniform sym-
metrical microstrip LPF with a cutoff frequency of 2.4
GHz. Next, different network models are compared to
find the variation of the non-uniform microstrip LPF
around 2.4 GHz along the specified frequency band S11
and S22 (dB) for different electrical lengths. It has been
observed that the network models of the microstrip LPF
are both more computationally efficient and as accurate
and reliable as the electromagnetic simulator.

Index Terms – Microstrip low-pass filter, MLP, deep
learning, non-uniform microstrip filter.

I. INTRODUCTION
Microstrip low-pass filters are two-port elements

that pass signals below the specified cutoff frequency
but do not pass signals above or reduce their ampli-
tude. This reduction amount varies according to the filter
design. For example, the filter used in audio applications
is called the treble cut or high cut filter. High-pass fil-
ters are the opposite of low-pass filters. Band-pass fil-
ters are a combination of low- and high-pass filters. The
main application areas of low-pass filters are electronic
circuits, image processing, sound processing, and acous-
tic problems. Low-pass filters are frequently used in
millimeter-wave and microwave systems to pass below
and above the desired cutoff frequency [1, 2]. The most
striking features of microstrip low-pass filters are their
small size and low interlayer losses. For this reason, its

use in the fields of cellular mobile communication, espe-
cially in electronic circuits, has become quite widespread
[1]. Embedded techniques and artificial neural networks
(ANNs) [3], transmission lines [4, 6], waveguides [7],
etc., examples are also available. In addition to all these,
there are also spiral and FET amplifier studies [8, 10]. In
recent years, artificial intelligence algorithms have been
used in many high-performance circuit designs. They
have been frequently used in many different microwave
circuit designs [11], such as unit cell models [12, 13] for
large-scale reflective array antenna designs and model-
ing of microstrip transmission lines [14, 15]. The algo-
rithm and architectural structures used in the study are
available in the multi-layer perceptron (MLP) modeling
study for a similar antenna design problem [16]. This
confirms the success of the algorithm and architecture.
All these studies show that scientists working in the field
of RF and microwave cannot remain indifferent to this
developing technology. In addition, the fact that ANN
can learn complex and non-linear training−test relation-
ships and make predictions with them has revealed the
idea that a study can be done by combining these two
subjects. In a study, a three-element filter was designed
with ANN [17]. The same author has other works on this
work [18]. In a modeling study with user-preference-
based range and step width, the total number of sam-
ples was specified as 55,450 [4]. In another recent study,
artificial-intelligence-based modeling of the microstrip
filter is available [19]. However, in this study, choosing
W-L as the input parameter increases the total number of
samples used and causes it to be 27,300.

One of the most important points in the design of
surrogate models is to determine the optimum amount
of training data. Failure to select the optimum amount
of training data may result in poor results or poor per-
formance due to high-dimensional samples. For this,
a sampling technique called Latin hypercube sampling
(LHS) was used to reduce data. The data used in
surrogate models are usually obtained using the 3D elec-
tromagnetic (EM) simulation tool. The proposed non-
uniform microstrip low-pass filter is modeled in the CST
microwave studio program. By using the created surro-
gate model, the data of the scattering parameters (S11 and
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S21) of the proposed non-uniform microstrip low-pass
filter depending on the design variables were obtained.
These obtained data were then used as training and test
data for the creation of an ANN-based proxy model.
MLP structure, which is one of the most widely used
structures, was used in the development of the ANN-
based proxy model. Briefly, within the scope of this
study, the variation of S11 and S21 (dB) parameters of a
non-uniform microstrip low-pass filter at 2.4 GHz cutoff
frequency of layers with different electrical lengths along
the determined frequency band is discussed using ANN.
The novelty of the study is that the S11 and S21 (dB)
parameters of the microstrip low-pass filter can be found
quickly, practically, and safely without costly computa-
tion and optimization processes with reduced data.

In the next part of the study, the analysis of the
parameters for the design of the microstrip low-pass fil-
ter and the selection of the input parameters to be used
in the modeling are mentioned. In the third part, a net-
work model design example is presented and information
about MLP training algorithms is given. Subsequently,
an exemplary study was carried out. Finally, the study
was completed with the conclusion and the suggested
part.

II. DESIGN OF MICROSTRIP LOW-PASS
FILTERS

A. Design parameters and analysis
As a design problem, low-pass filters basically con-

sist of two stages. The first step is to identify a suitable
low-pass prototype. Here, the passband fluctuation and
the number of layers must be within the specified specifi-
cations. All of this includes filter sorting between layers.
The conversion from electrical length (gi) parameters to
line lengths (Weight-Length) used in the EM simulator
is available in detail in Chapter 8 of the microwave engi-
neering book [20]. These lengths can also be calculated
using any microstrip line calculator [21]. The second
step is to determine the most suitable model for the deter-
mined microstrip low-pass filter [20]. The impedance
value Z0 value is 50 Ω and the electrical length gi is
taken as normalized values. The filter design is designed
on the layer with the substrate thickness (h) in mm and
the dielectric constant (εr) [22]. The number of layers
is determined during design. The design and modeling
process are performed for the determined value.

The characteristics of the designed microstrip low-
pass filter are given in Table 1. The circuit model for the
microstrip low-pass filter is shown in Figure 1.

B. Modeling parameter detection
The low training cost to be obtained is achieved

by determining the optimum connection weights of the
network. The selection of the input data set is very
important for the determination of these optimum con-

Table 1: Filter design parameters
Definition Parameter Value

Dielectric constant εr 4.4
Layer height h 1.6 (mm)

Cutting frequency f cut 2.4 (GHz)
Filter impedance Z0 50 (Ω)

Lowest line impedance Z0L 20 (Ω)
Highest line impedance Z0H 120 (Ω)

Fig. 1. 3D circuit model for eight-layer symmetrical
microstrip low-pass filter.

nection weights. The input parameter (electrical length
gi) ranges to be used in order to train the network in
the widest range with the most optimum results were
selected in the range of 0.5−2.6 from the results of an
optimization study [23]. These values are in the widest
range band and include the ranges used in other stud-
ies [23, 24]. As it is known, optimization processes are
long and costly processes. For this reason, the modeling
process with the appropriate data set in many subjects
provides a convenient and low-cost opportunity in terms
of time. In addition, data reduction is frequently used
in such applications in a way that does not change the
result obtained from the analysis. For this, a sampling
technique called LHS was chosen and modified accord-
ing to the objectives of the present study. Data reduction
method was used by taking the widest range selected for
each layer as a reference.

LHS is a popular stratified sampling technique first
proposed by MacKay [25] and further developed by
Iman and Conover [26]. It is a sampling method of
random designs that try to be evenly distributed in the
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Table 2: Data set

Parameter Range Sampling Number of
Method Samples

gi 0.50−2.6 LHS 225
Frequency (GHz) 0.05−5.0 Linear 100

Train sample − − (225/2) ×
100

Validation − − (225/2) ×
sample 100

design space. With the LHS, one must first decide how
many sample points to use and remember in which row
and column the sample point is taken for each sample
point. This configuration is similar to having N rooks
on a chessboard without threatening each other [25, 26].
Here, the electrical lengths (gi) of the eight-layer sym-
metrical filter are selected in the ranges given in Table 2.
Equal step spacing was chosen as 0.05 so that there are
100 frequency samples in total.

III. MLP MODEL FOR MICROSTRIP
LOW-PASS FILTER ANALYSIS

MLP-type multi-layer ANNs consist of input, hid-
den, and output layers. The structure of the network
allows multi-element input/output modeling [27]. The
MLP model used in this design is designed for differ-
ent parameters consisting of two, three, and four hidden
layers and consisting of 5, 10, 15, and 20 neurons. Sim-
ilar structures have given successful results for a differ-
ent study before [16]. Neurons input/output layers have
different weight coefficients. In the training phase, mod-
eling continues until the resulting training error rate is
minimized [27]. For this purpose, a combination of two
different activation functions was used between the lay-
ers. As the activation function in the hidden layer, log-
sis is preferred in the last neuron and tansig is preferred
for the other layers. The output obtained as a result of
each iteration is compared with the target, and depend-
ing on the error given, the network training is continued
with the weight renewal process or the training process
is terminated. The total input to the neurons of each
layer is obtained by weighting the neuron outputs in a
lower layer. The training success of the network can be
achieved by adjusting these different weight coefficients
correctly. This adjustment is compared with the output
values in the previous step and corrected in the next step.
Of course, besides these, it is very important to create
the accurate network model. While creating the network
model, there are a total of five input parameters, includ-
ing four electrical length (gi) parameters and frequency,
which are different because the filter has a symmetrical
structure. The black box model of the proposed network
structure is given in Figure 2.

Fig. 2. ANN model for training S11 and S21 (dB) param-
eters of microstrip low-pass filter.

A. Activation functions
In this study, the activation functions used between

layers for MLP type ANNs are, respectively, tangent-
sigmoid (tansig) and logarithmic-sigmoid (logsig).

Tansig: The neuron input−output expression for this
activation function is given in eqn (1) and the change of
the function is given in Figure 3 (a). The dynamic range
of change of the function is the range [−1 1], and the
function neuron shows a non-linear change in this range
depending on the total input. This function is also called
the hyperbolic-tangent function in the literature

a = 2/(1+ e(−2n))−1. (1)
Logsig: The input−output expression of this activation
function, which is also called the sigmoid function, and
the change of the function according to the input are
given in eqn (2) and Figure 3 (b), respectively. The
dynamic range of the function is the range [0 1], and the
function exhibits a non-linear change in this range

a = 1/(1+ e−n). (2)

B. Training algorithms
There are various training algorithms used to train

the selected network. Here, we will explain three dif-

Fig. 3. (a) Tangent-sigmoid function input−output
curve. (b) Logarithmic-sigmoid function input−output
curve.
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ferent neural network algorithms that we used while
creating the algorithm. These algorithms are trainbr
(Bayesian regularization), trainlm (quasi-Newton), and
trainrp (gradient descent) [28].

Trainbr: Bayesian regression algorithm is a network
training function in which the weight values and bias
corresponding to the Levenberg−Marquardt optimiza-
tion are updated. It reduces the combination of weights
and squared errors to determine the appropriate combi-
nation that will help develop an important generalized
quality network, and this whole process is known as
Bayesian editing. Also, this function has some disadvan-
tages such as using Jacobian for calculations; where per-
formance is assumed to be the mean or sum of squared
errors. Therefore, all structures/networks trained with
the trainbr function should use either the mean of squared
errors or the sum of squared errors [29].

Trainlm: Quasi-Newton algorithm provides preferred
and fast optimization over conjugate gradient algorithms.
It is based on the Hessian matrix (second derivatives) of
the performance function with respect to the current val-
ues of the weights and deviations. It provides faster con-
vergence than conjugate gradient methods. Because of
its complexity, it takes a lot of time to find the Hessian
matrix for FFNN. It is also known as the secant method
and does not need any quadratic calculations. The Hes-
sian matrix is updated very closely in all iterations of the
algorithms. Trainlm is an iterative approach where the
performance function will always be reduced in all iter-
ations of the algorithm. Therefore, it becomes the fastest
training algorithm for networks with a modest size. It
also detects the minimum of a multi-variate function,
which is the sum of the squares of non-linear real-valued
functions. Besides its advantages, it has some limita-
tions such as storage problem and computational over-
head [30].

Trainrp: Gradient descent algorithms are popular-
ized training algorithms that perform the basic gradient
descent algorithm that changes the weights and biases
toward the negative gradient of the performance func-
tion. The elasticity back propagation (trainrp) training
algorithm cancels out the results of the weights of the
partial derivatives [31]. In this algorithm, the deriva-
tive sign is used to decide whether to update the weights,
and the size of the derivative does not affect the weight
update. The weight change amount is learned with an
independent update value. If the first derivative of the
performance function by weight is of equal magnitude
for two consecutive iterations [32], the update value is
raised by a factor for each weight and deviation, and the
same weight changes from the previous iteration. If the
derivative is zero, the update will stay the same, and if
the weights are flickering, they will be reduced.

IV. CASE STUDY
In the study part, a modeling study will be made for

the ISM band application of the MLP-based eight-layer
non-uniform microstrip filter. The proposed eight-layer
microstrip filter is formed with a symmetrical structure.
In this symmetric model, there are eight microstrip trans-
mission lines, four of which are different. Therefore,
based on the ANN model in Figure 2, the microstrip fil-
ter consists of five variables in total, including the fre-
quency that will directly affect the output parameters S11
and S21 (dB). Training and validation data sets (Table
1) to construct the proposed MLP-based microstrip filter
model are obtained using the EM simulation tool for the
selected substrate FR4 (h = 1.6 mm; εr = 4.4). For the
intervals given in Table 2, the data set is created using
the LHS method. Here, the number of training and test
data reduced for training is 225× 100 in total. This input
data is sized with the aid of a microstrip line calculator
to obtain the results of S11 and S22 (dB) at each sample
frequency. The resulting data sets are randomly divided
into half as training and test data. This training and test
data are processed with predetermined MLP algorithms
and architectures (a total of 21 different types). All these
applied processes are presented in Figure 4 as a flow
chart. Since MLP algorithms are based on randomly
initiated conditions and processes, the microstrip filter
design is evaluated for 10 different runs to determine the
best, worst, and mean performance of each MLP model

Fig. 4. Flow chart of modeling process of LHS- and
MLP-based low-pass filter.
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Table 3: Performance comparison of ANN models based
on MAE

Algorithm

Architecture Max. Min. Mean
trainbr 5 10 2.09 1.96 2.01

10 15 1.58 1.32 1.47
15 20 1.40 0.98 1.17

5 10 15 0.93 0.81 0.88
5 15 20 1.00 0.76 0.90
10 15 20 0.91 0.55 0.74

5 10 15 20 0.66 0.49 0.62

trainlm

5 10 2.21 2.09 2.16
10 15 1.76 1.20 1.47
15 20 1.32 1.09 1.12

5 10 15 4.17 0.66 2.60
5 15 20 1.17 0.76 0.97
10 15 20 0.79 0.67 0.69

5 10 15 20 1.06 0.63 0.80

trainrp

5 10 2.92 2.76 2.83
10 15 2.46 2.34 2.38
15 20 2.41 2.18 2.28

5 10 15 2.66 2.43 2.55
5 15 20 2.75 2.35 2.41
10 15 20 2.12 1.81 1.99

5 10 15 20 2.37 2.26 2.34

to determine the most stable architecture for the opti-
mization problem.

The following are the commonly used error metrics
used for performance evaluation of MLP models: mean
absolute error (MAE) (eqn (3)); relative mean absolute
error (RMAE) (eqn (4))

MAE =
1
N

N

∑
i=1
|Ti−Pi| (3)

RMAE =
1
N

N

∑
i=1

|Ti−Pi|
|Ti|

(4)

where N is the total number of samples, T is the target
value, and P stands for predicted value.

The performance measures obtained in 10 differ-
ent runs for the 21 different ANN models identified are
given in Table 3. Here, the MAE value is used in the
overall comparison of the models during the validation
process. The error value decreases with the increase
in the number of hidden layers in the architecture used.
However, among the algorithms used, trainbr (Bayesian
regression) has the best results. As a result, among the
results in Table 3, {5-10-15-20} trained with the trainbr
method and the model trained with four hidden layers
and hidden neurons has the best performance criteria
in terms of both minimum error and narrow max−min
range. The results selected from {5-10-15-20} trained
with Bayesian regression method and the model trained
with four hidden layers and hidden neurons. In Figure 5
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Fig. 5. Result of EM simulation and MLP-based modeling with the trainbr algorithm, {5-10-15-20} with hidden 
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(b) g1-7 = 1.71; g2-6 = 2.04; g3-5 = 1.91; g4 = 2.28; g8 = 1. (c) g1-7 = 1.68; g2-6 = 1.19; g3-5 = 2.45; g4 = 1.23; g8 = 1. (d) g1-

7 = 1.17; g2-6 = 2.06; g3-5 = 1.9; g4 = 2.11; g8 = 1. 
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using the LHS method in the selection of training and test data. The proposed model is also low-cost in terms of 

total number of samples and computation [4, 19]. Performance comparisons were made for different algorithms and 

architectures using the created data sets. Thus, the most successful algorithm and architecture were determined. 

Algorithms and architectures used in the proposed MLP model have been chosen from those that have proven 

successful for a different design problem [16]. As a result of the study, it was seen that the ANN modeling used and 

Fig. 5. Result of EM simulation and MLP-based mod-
eling with the trainbr algorithm, {5-10-15-20} with hid-
den layers for eight-layer low-pass filter as S11 and S21
parameters: (a) g1−7 = 1.48; g2−6 = 1.97; g3−5 = 2.18;
g4 = 1.7; g8 = 1. (b) g1−7 = 1.71; g2−6 = 2.04; g3−5 =
1.91; g4 = 2.28; g8 = 1. (c) g1−7 = 1.68; g2−6 = 1.19;
g3−5 = 2.45; g4 = 1.23; g8 = 1. (d) g1−7 = 1.17; g2−6 =
2.06; g3−5 = 1.9; g4 = 2.11; g8 = 1.
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Table 4: Performance comparison with other ANN mod-
els based on MEA
Model Hyperparameter Test Error
MLP Hidden layer = 4neuron =

[5 10 15 20]
0.49

RBF Spread = 0.215 1.42
GRNN Spread = 0.181 1.67
Ensemble Method: bag, Number of

cycles: 488, Min. leaf
size: 1 Max. number of
splits: 3344

1.8 ± 0.2

(a)−(d), S11 and S21 (dB) values were obtained by ANN.
The estimated prediction is shown with the MATLAB
program as target data obtained with the 3D EM simu-
lation tool CST. As can be seen in the graphics, a high
success has been achieved.

Finally, performance comparisons were made
with other ANN models, especially XGBoosting-based
ensemble learning, which has been popular recently in
the best result surrogate model designs found with the
proposed model. The parameters and results used in
XGBoosting, radial basis function (RBF), and general
regression neural network (GRNN) models are given
numerically in Table 4. As can be seen from the results,
the proposed model has the lowest error result.

V. CONCLUSION
Here, the modeling of the fast, practical, and reli-

able S11 and S21 (dB) parameters of the non-uniform
microstrip filter is discussed using MLP for certain
design features. The total number of samples was kept
to a minimum by using the LHS method in the selec-
tion of training and test data. The proposed model is also
low-cost in terms of total number of samples and compu-
tation [4, 19]. Performance comparisons were made for
different algorithms and architectures using the created
data sets. Thus, the most successful algorithm and archi-
tecture were determined. Algorithms and architectures
used in the proposed MLP model have been chosen from
those that have proven successful for a different design
problem [16]. As a result of the study, it was seen that
the ANN modeling used and 225 samples were used as
accurately as an EM simulator for other electrical lengths
(gi) parameters in a wide range selected. In addition,
the proposed model is not only limited to a non-uniform
microstrip filter but can also be successfully applied to
other microwave circuit design problems by changing the
design optimization aim.
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