
841 ACES JOURNAL, Vol. 38, No. 11, November 2023

Physics-informed Neural Networks for the Resolution of Analysis Problems in
Electromagnetics

S. Barmada1, P. Di Barba2, A. Formisano3, M. E. Mognaschi2, and M. Tucci1

1DESTEC, University of Pisa, Pisa, Italy
sami.barmada@unipi.it, mauro.tucci@unipi.it

2Dept. of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
paolo.dibarba@unipv.it, eve.mognaschi@unipv.it

3Dept. of Engineering, University of Campania “Luigi Vanvitelli,” Aversa, Italy
alessandro.formisano@unicampania.it

Abstract – Learning from examples is the golden rule in
the construction of behavioral models using neural net-
works (NN). When NN are trained to simulate physi-
cal equations, the tight enforcement of such laws is not
guaranteed by the training process. In addition, there
can be situations in which providing enough examples
for a reliable training can be difficult, if not impossible.
To alleviate these drawbacks of NN, recently a class of
NN incorporating physical behavior has been proposed.
Such NN are called “physics-informed neural networks”
(PINN). In this contribution, their application to direct
electromagnetic (EM) problems will be presented, and
a formulation able to minimize an integral error will be
introduced.

Index Terms – Direct and inverse electromagnetic prob-
lems, neural networks, physics informed neural net-
works.

I. INTRODUCTION
Machine learning or neural network (NN)

approaches are frequently adopted to create models
of physical relationships, starting from a set of input-
output examples: we can refer, for instance, to the
computation of the magnetic field created by known
sources in a set of measurement points (e.g., currents
in assigned coils); this is usually referred to as for-
ward problem. Data-driven approaches are applicable
also for solving inverse problems (loosely speaking,
recovering the source originating the observed field)
[1–3], although their nature, usually ill-posed or ill-
conditioned, requires dedicated countermeasures. As a
matter of fact, data-driven approaches usually converge,
under suitable but quite relaxed hypotheses, to some
solution tightly related to the selection of examples and
of the training paradigm. On the other hand, in the case

of NN mimicking the behavior of physical systems, it is
expected not only that the model is able to generalize its
response to cases not included in the learning dataset but
also that the underlying equations are fully respected.
A second relevant issue related to the use of NN to
simulate physical phenomena is the difficulty in creating
datasets populated enough to grant reliable training.
This is particularly relevant in cases where the data
must be gathered from experiments, or from demanding
simulations.

Recently, the concept of “physics-informed” learn-
ing started to be considered as a powerful aid to the con-
struction of data-driven models converging to solutions
with known properties [3]. The underlying concept is to
try using the governing equations of the physical system
as a priori knowledge, able to regularize the learning pro-
cess, driving it towards acceptable solutions. Such a pri-
ori knowledge also helps in reducing the need for large
datasets for the learning and testing of NN.

As a matter of fact, in several areas of physics
including EM, physics-informed neural networks
(PINNs) [4], with their compelling ability of learn-
ing solutions of partial differential equations (PDEs)
without the need for providing examples, have gained
popularity. However, first contributions to the use of
neural networks for EM field analyses date back to the
beginning of the 2000s. For instance, in [5] a finite
element neural network (FENN) that embeds finite
element models into a neural network format for solving
Poisson’s equation was proposed. More recently, other
relevant works [6, 7] dealing with electrostatic problems,
made use of convolutional neural networks (CNNs). In
particular, [6] highlighted the flexibility of CNNs in the
case of complex distributions of excitation sources and
dielectric constants. Since the introduction of PINNs,
most applications in EM have involved optics [8–12];
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more specifically, in [8] Maxwell’s equations were
solved in the frequency domain with several model
simplifications. The architecture was similar to the one
of a generative adversarial network (GAN): the first
part is reminiscent of a generator since it maps the
space distribution of permittivity to the electric field
distribution. The second part, i.e., the discriminator,
evaluates how physically sound the generator’s outputs
are. This enables, after training, the creation of a real-
time field solver. This idea was re-introduced in [9] and
put in a more general framework. In turn, [12] predicted
the time evolution field in transient electrodynamics
making use of an encoder-recurrent-decoder architec-
ture. PINNs have also been used in magnetostatics and
magneto-quasi-statics [13–16].

It can be noted that in most works (e.g., [2, 4,
10–14]), PINNs do not take system parameters (i.e.,
geometries, field sources, material properties) as an input
and therefore they must be retrained, eventually tak-
ing advantage of transfer learning whenever the system
parameters in the model must be changed. However, a
few exceptions are reported in [8], [9], [15] where, once
trained, PINNs could provide the solution of a class of
direct field problems. This has been achieved by con-
volutional layers adopted in a GAN-like framework as
in [8, 9]. More recently PINNs using dense layers and
taking system parameters as input have been introduced
[15], while in [16] an energy-based error function was
used for training a PINN for the solution of magneto-
static problems.

Summing up, three mainstream methods could be
categorized:

− Data-driven networks: Starting from the available
observations, this approach generates a (nonlinear)
model not only able to reproduce the observed data
but also to generalize on data not included in train-
ing datasets [17]. As an example, [18] proposes
a PDE-Net to identify the governing PDE models
by data learning, able to approximate the unknown
nonlinear responses.

− Physics-constrained networks: Within this further
approach, physics constraints are introduced to
strengthen the prediction ability of the NN, espe-
cially in the small data regime. Following the sem-
inal paper [4], in [19] a physics-informed extreme
learning machine (PIELM) to solve PDEs in com-
plex domains was presented.

− Algorithm optimization based on NN: More
recently, the NN approach has been used to opti-
mize the performance of classical numerical meth-
ods. In [20], for instance, a NN has been utilized for
accelerating the numerical resolution of PDEs; this

way, a substantial gain in computational efficiency
over standard numerical methods was achieved.

In this contribution, a brief description of possible
schemes to introduce partial differential equations in the
structure of NN is first presented; this basically trans-
forms a NN into a PINN, capable of self learning and not
needing any pre-calculated training set. Then a simple
electromagnetic problem is presented to show the effec-
tiveness of PINN in the resolution of (direct) EM field
problems. Finally, a perspective on PINN based on inte-
gral rather than pointwise error functional is presented.

II. PHYSICS INFORMED NEURAL
NETWORKS

A. Local residual approach
To clarify ideas, let us consider a simple non-

dynamical problem in EM field computation, described
by Poisson equation, with suitable boundary condi-
tions: ∇2ϕ (x, t)= f (x, t) ∀x∈Ω

ϕ=ϕ∗ on ∂ΩD
∂nϕ=ψ∗ on ∂ΩN

. (1)

In (1), the time t is a simple parameter, but the
PINN approach is general enough to treat also dynam-
ical cases. ∇2 represents the Laplacian of the unknown
(scalar) function ϕ (x), Ω is the spatial definition domain,
∂ΩD and ∂ΩN are the Dirichlet and Neumann parts of
the boundary, respectively.

A NN model of (1) receives as input the coordinates
x of a point within Ω and yields as output the value of
the approximated solution ϕ̂ (x, pNN), where pNN repre-
sents the vector of weights and biases describing the NN.
A possible approach to consider the a priori information
about (1) is to define a representation error E, including
a term related to the “residual” of the equation, and a
second term related to boundary conditions:

E(pNN)= Ebnd (pNN)+Eeq (pNN) , (2)
where

Ebnd (pNN) = ∥ϕ̃ (x, pNN)−ϕ
∗(x)∥x∈∂ΩD

+∥∂nϕ̃ (x, pNN)−ψ
∗(x)∥x∈∂ΩN

, (3)

and
Eeq =

∥∥∇
2
ϕ̃ (x, pNN)− f (x)

∥∥
x∈Ω

, (4)
where ϕ∗ and ψ∗ are the assigned conditions on the
Dirichlet and Neumann parts of the boundary, respec-
tively, while x represents the array of sampling points
coordinate where error is evaluated; we note that the term
Eeq can be computed using the automated differentiation
(AD) approach described in [4, 21]. When eq.(4) is eval-
uated using a L2 norm, it is often referred to as energy-
like error.

Figure 1 shows a general view of the training pro-
cess of a PINN inspired by (1)-(4).
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Fig. 1. General architecture of a PINN for solving a PDE.
EIC represents the error due to initial conditions in the
case of dynamical problems, x = (x1,x2) for the sake of
simplicity.

B. Integral error approach
PINNs solving problems similar to (1) are usually

trained based on the local residual of the governing equa-
tions [1, 2], and derivatives are typically evaluated by
means of AD. Unfortunately, this approach could suf-
fer from poor regularity. Domain decomposition repre-
sents a potential workaround [2], but only up to a certain
degree. In this contribution, the authors propose an addi-
tional strategy, based on the minimization of an integral
error instead of local quantities, much like the Rayleigh-
Ritz method [22].

We start from the weighted residual form of (1):∫∫∫
Ω

(
k∇

2
ϕ − f

)
λdΩ = 0 ∀λ ∈ H0, (5)

where k is the material constant (permeability µ in the
case of magnetostatics and permittivity ε in the case
of electrostatics), and H0 is a suitable Sobolev space,
defined according to the boundary conditions. The solu-
tion will be defined in Hg, the space of functions with
correct boundary values on ∂ΩD (which will be explic-
itly enforced at training time). Using standard calculus,
eq.(5) can be reformulated as [22]:∫∫
∂ΩN

k
∂ϕ

∂n
λdΣ−

∫∫∫
Ω

(∇ϕk∇λ )dΩ+
∫∫∫

Ω

( f λ )dΩ = 0.

(6)
Equation (6) can be discretized following a Galerkin

approach, in which the weighting functions are selected
as coincident with the elements of the representation
basis for the unknown function. More in detail the
approximate solution is defined as

ϕ̃ = ∑
i=1,2,N out

pNNiλi, (7)

where pNNi are the coefficients of the expansion, usually
named nodal potentials Φi in FEM-like expressions, λ j
is the jth weighting function, and Nout is the number of
output neurons. With this in mind, equations (6) and (7)
lead to the following discretization.

∫∫∫
Ω

[(
∑

i=1,2,Nout
pNNi∇λi

)
k∇λ j

]
dΩ

=
∫∫∫

Ω

( f λk)dΩ−
∫∫
∂ΩN

kgλ jdΣ

∀λ j ∈ H0.

(8)

Note that for the sake of simplicity in (8) we have
highlighted just the dependence on output layer weights,
but the argument of the functions λi does contain all
the weights (and activation functions) of the hidden and
input layers.

It is now necessary to turn (8) into an error func-
tion for the PINN training, with the aim of obtaining, at
the end of the training step, a network able to provide
a reliable approximation ϕ̂ (x, pNN) also for points not
included in the training data. In view of this, a possible
approach inspired by the Ritz formulation is to generate
a training dataset from Npnt points in Ω (and as well as
on the boundaries ∂ΩD and ∂ΩN) and compute integrals
as discrete summations. Accordingly, the left-hand side
term in (8) modifies as

∫∫∫
Ω

[(
∑

i=1, Nout
pNN−i∇λi

)
k∇λ j

]
dΩ

= ∑
n=1, Npnt

(
wn ∑

i=1, Nout
pNN−i∇λi (xn)k∇λ j (xn)

)
.

(9)
We note that this approach corresponds to looking

for the stationary points of the energy functional already
defined in (4), the only difference, in this straightfor-
ward formulation, being that the training takes place only
when all points have been processed (batch learning).

III. TEST CASES
A. Overall description

In this section, two test cases are shown. The first
one presents the solution of a Poisson equation in a 1D
domain. This simple problem serves as first validation
relative to the use of PINNs for the solution of partial
differential equations. It must be highlighted that in this
implementation, the PINN does not need a training data-
set: starting from a random guess solution, obtained by
a random initialization of weights and biases, in a set of
internal points (and on the boundary), the PINN evalu-
ates the approximate solution ϕ̂ , and at each epoch the
physics-based error function (4) leads to an adjustment
of the weights/biases. After the training is over, the PINN
is capable of evaluating the function ϕ in points not nec-
essarily coincident with the original set. This process can
be referred to as self-training because no input-output
pattern is externally supplied; furthermore the possibility
of freely selecting the evaluation points makes the PINN
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similar to a meshless method. In the following sections,
the word “grid” is used to indicate the set of points x . It
is implicit that with this process a PINN trains itself on
a specific set of points (grid); for this reason a change in
the geometry necessarily leads to a new PINN, as it is for
a new model in standard numerical methods.

A more complex 2D problem is then considered: this
second example shows the accuracy of the method and its
potential for the solution of general problems in presence
of Neumann/Dirichlet boundary conditions. This prob-
lem is solved using the local residual approach; in addi-
tion, the quantities object of the integral error approach
are also shown together with a perspective overview.

B. 1D problem
To show the performance of the PINN approach to

electromagnetic analysis, we first considered a simple
one-dimensional problem ruled by the Poisson’s equa-
tion subject to Dirichlet boundary conditions. In particu-
lar, the problem to be solved is defined in Ω = [0,1] and
described in equation (769){

∂ 2ϕ

∂x2 =−10 in Ω

ϕ(0) = 0,ϕ(1) = 1
. (10)

Following the methodological approach (1)-(4), a
shallow NN composed of one input layer fed with
sampling point coordinates, and one hidden layer with
4 neurons, was synthesized. Sigmoidal functions were
selected as the activation function; stochastic gradient
descent was the minimization algorithm, with random
initialization of weights and biases and learning rate
5×10−3. Nsamp = 21 sampling points were considered
to compute E on the grid discretizing the domain; in par-
ticular, the use of sigmoidal activation functions made it
possible to analytically evaluate the second-order deriva-
tive in the Laplace operator. In Fig. 2 the training his-

Fig. 2. Error function history during training (1D prob-
lem).

tory of the network is shown in terms of error function
against epochs, while in Fig. 3 the solution predicted by
the trained PINN is represented.

After several experiments, an excellent agreement
between predicted solution and exact solution was
observed.

Fig. 3. Solution of the 1D problem. Arbitrary units are
used for visualization.

C. 2D problem, local residual approach
As a less trivial test case, the following 2D problem

has been considered:
∂ 2ϕ(x,y)

∂x2 + ∂ 2ϕ(x,y)
∂y2 = 0 in Ω

ϕ = 0,∂ΩD0
ϕ = 1,∂ΩDV

. (11)

The domain Ω is described in Fig. 4, in which L =
1 m. Also in this case, a shallow NN with sigmoidal acti-
vation functions has been used. The details of the net-
work are shown in Table 1.

Table 1: Neural network description
Input dimension 2

Output dimension 1
Number of hidden layers 5

Number of neurons in each hidden layer 15
Total number of parameters 1021

The hyper-parameters above described have been
determined by using a 5-fold cross validation with the
number of hidden layers varying from 1 to 7 and with
the number of neurons in each hidden layer from 2 to 20.
Due to the final number of parameters, the PINN can be
classified as a deep network for regression purpose.

Stochastic gradient descent was the minimization
algorithm, with random initialization of weights and
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biases and a learning rate equal to 5 ·10−3. Nsamp = 300
sampling points were considered to compute the error
function on the grid discretizing the domain. In par-
ticular, the adopted grid is composed by a set of 300
equally spaced point, in both the x1 and x2 directions,
with ∆x1 = ∆x2 = L/20, as shown in Fig. 5.

Fig. 4. Graphical description of the 2D test case. ∂ΩN
is the section of boundary where Neumann conditions
hold, ∂ΩD0 and ∂ΩDV the sections where vanishing and
non-vanishing Dirichlet conditions hold, respectively.

Fig. 5. Representation of the grid used to train the PINN
or the 2D example.

In case the local residual approach (2)-(4) is fol-
lowed, the solution obtained after training the PINN is
depicted in Fig. 6, while Fig. 7 shows the field evaluated
by AD.

The error function training history is shown in
Fig. 8. The accuracy of the solution has been prop-
erly verified, comparing the obtained potential with the
results obtained by a finite element method model imple-
mented on Comsol Multiphysics [23]. For the sake of
conciseness, a point-to-point comparison is not shown

Fig. 6. Potential map obtained by the use of the PINN.

Fig. 7. Field as evaluated by the PINN and AD.

Fig. 8. Error function history during training (2D prob-
lem).

here, but an integral like comparison (between the ener-
gies calculated by both methods) is shown in the next
section.

D. 2D problem, integral error approach
As an intermediate step between the local residual

approach and the integral error approach, the behavior
of the global energy as a function of the training epoch
has been evaluated (Fig. 9). In this case, the “energy” is
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calculated by using the point values of ∇ϕ̂ (obtained by
AD), integrated on the relevant support (< 1 in case of a
grid point belonging to ∂Ω). This shows that, in the con-
sidered case, the integral formulation leads to the same
result, yet being able to treat prospectively also the case
of internal discontinuities in the material properties like
magnetic permeability. The graph shows that the energy

WPINN = µ

(
∑

i=1,2,N out
pNNi∇λi

)2

, (12)

(with µ being the magnetic permeability) reaches a value
of WPINN= 1.68 µJ at the end of the training phase;
the total energy independently obtained by means of the
benchmark FEM is WFEM= 1.61 µJ, showing again the
good agreement between the PINN and the FEM analy-
sis. It is noteworthy that, in case the integral approach is
performed on delta-like expansion functions, the evalua-
tion of the integral approach leads to the same point-wise
evaluation as shown in Fig. 5 at the same time, eq. (12)
can substitute eq. (4) in the definition of an integral error
approach, which would take the meaning of an energy-
based approach.

Fig. 9. Energy during training (2D problem).

IV. CONCLUSIONS AND OUTLOOK
In this paper, the use of PINN for the resolution of

EM problems has been considered. Both local and inte-
gral errors, the latter being related to the value of the
energy in the domain object of analysis, have been pro-
posed as error functions for the NN training. In the con-
sidered examples, both approaches converged during the
training phase.

The examples are aimed at showing the effective-
ness of energy-based training; in particular, the lat-
ter is able to easily deal also with problems entailing
discontinuities in the distribution of material properties.
Moreover, when using a weighted residual formulation
rather than the Ritz one, a different choice of the base

functions and weight functions would be possible; this
way, most numerical methods based on weighted resid-
ual could be revisited in terms of PINN.
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