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Abstract – This paper presents the implementation of the
parallel hybrid implicit-explicit finite-difference time-
domain (HIE-FDTD) method using the Message Passing
Interface (MPI) library. The method proves to be very
effective in simulating large-scale three-dimensional
electromagnetic problems with fine structures in one
direction. For the decomposition of the computational
volume in the HIE-FDTD method, an MPI Cartesian
2D topology is implemented, allowing arbitrary divi-
sion of the volume in two directions. Derived data types
provided in the MPI library are employed to optimize
inter-process communication. High accuracy and effi-
ciency are subsequently demonstrated through a numer-
ical example of a frequency-selected surface (FSS). It
shows that the proposed method is very suitable for par-
allel computing, and the parallel efficiency maintains
above 80% for different numbers of processes.

Index Terms – Electromagnetic scattering, finite-
difference time-domain (FDTD), HIE-FDTD, parallel
computing, thin layers.

I. INTRODUCTION
The finite-difference time-domain (FDTD) method

is widely used due to its explicit leapfrog iterative
scheme in the simulation of electromagnetic problems
[1, 2]. Additionally, its regular data structures make it a
top choice for parallelizing using domain-decomposition
techniques to accelerate the solution of large-scale elec-
tromagnetic problems [3].

Two methods are widely used to achieve parallel
computing of the FDTD method, using multi-core cen-
tral processing units (CPUs) or using graphical process-
ing units (GPUs). However, GPUs require additional
hardware costs compared to multi-core CPUs, as they are
separate hardware devices that are initialized and exe-
cuted by a program running on a CPU. Besides that, it
is hard to simulate the large-scale electromagnetic prob-
lems using a single GPU for its smaller memory size than
CPU. Therefore, An MPI-based three dimensional paral-
lel FDTD algorithm has been developed in [3].

Thin layers in electromagnetic devices are typi-
cally essential due to their significant impact on device
performance, making the electromagnetic simulation of
such structures valuable. However, in the FDTD method,
which is constrained by the Courant-Friedrichs-Lewy
(CFL) condition, the maximum time step size depends
on the minimum mesh size in the computational volume,
leading to inefficiencies in handling problems with fine
structures.

Several unconditional stability FDTD methods,
such as the alternating-direction implicit (ADI) FDTD
method [4], Crank-Nicolson (CN) FDTD method [5]
and the locally-one-dimensional (LOD) FDTD method
[6], which introduce the implicit updating equations in
the conventional FDTD method, have been proposed in
order to eliminate the CFL bound. It should be noted
that although the ADI-FDTD method is unconditionally
stable, it has second-order truncation error terms that
can reduce its accuracy [7]. The CN-FDTD and LOD-
FDTD methods have high accuracy, but they both need
to solve the large matrix which decreases the efficiency
greatly. Furthermore, when applied to large-scale prob-
lems, issues such as augmented data traffic present chal-
lenges to the parallel implementation of the ADI-FDTD,
CN-FDTD, and LOD-FDTD methods.

For some electromagnetic problems, such as the
analysis of the degradation of shielding effectiveness
with thin slots or frequency selective surfaces with thin
layers, fine structures are present only in one direction
[8]. Fine grids should be applied solely in the direction
of the fine structure rather than in all three directions. In
order to improve the efficiency of electromagnetic sim-
ulation for these structures, the HIE-FDTD method was
proposed to eliminate the limitations of the fine grids on
the time step size [9]. Apart from that, the error exists
in semi-implicit processing rather than implicit process-
ing, making HIE-FDTD more accurate than the ADI-
FDTD method [10]. The computational volume in the
HIE-FDTD cannot be directly divided in the direction
of the fine structures as it is necessary for tridiagonal
matrix equations solving, but it can be divided in both
other directions. Due to its ability to directly divide the
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computational domain into subdomains, HIE-FDTD is
more suitable for parallelizing than the ADI-FDTD, CN-
FDTD, and LOD-FDTD methods.

This paper describes the implementation of a par-
allel HIE-FDTD method based on the MPI library,
which offers clear standardization benefits, especially
in distributed storage communication environments. The
computation volume can be decomposed using process
topologies along the x- and z-directions. MPI commu-
nication functions and derived data types are used for
transmitting field values between processes.

This paper is structured as follows. In Section II, the
theory of the HIE-FDTD method is introduced. Section
III demonstrates the implementation of the parallel HIE-
FDTD method. Section IV presents a numerical example
that confirms the high accuracy and efficiency of the pro-
posed method. The conclusion is given in Section V.

II. THEORY OF THE HIE-FDTD METHOD
Assuming fine structures exist in the y-direction, the

explicit equations for Eyand Hy components in the HIE-
FDTD method are as follows:
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where ∆t is the size of the time step. ε , σ , µ , and σm
are the electrical permittivity, electric conductivity, mag-
netic permeability, and the equivalent magnetic loss of
the media, respectively. n is the index of the time step.
i, j, and k are the indices of spatial increments along the
x-, y-, and z-directions.

The semi-implicit processing of the HIE-FDTD
method can be found as follows:
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The formulations of the HIE-FDTD method are
shown above with the field components arranged simi-
larly to the FDTD method. According to (4), updating of
Ex component requires Hz component at the same step.
Thus, Ex component cannot be updated explicitly. Sub-
stituting (6) into (4) gives us the equation of Ex compo-
nent that is given by
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Substituting (7) into (5) gives us the equation of Ez

component that is given by
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Thus, the process of updating field components

entails the explicit update of Ey and Hy by using equa-
tions (1) and (2) first, followed by the implicit update of
Ex and Ez via tridiagonal matrix equations (8) and (10).
Finally, explicit updating is made to obtain the Hz and Hx
components by using equations (6) and (7).

The time step size in the HIE-FDTD method can be
calculated as follows [9]:

∆t ≤ 1
/

c
√

1
/

∆x2 +1
/

∆z2, (12)

where c = 1/
√

εµ is the speed of light in the medium,
and ∆x, ∆z are the minimum cell in the x- and z-
directions.

It indicates that the stability condition for the HIE-
FDTD method is not restricted by the cells in the fine
structures, unlike the FDTD method. Therefore, if a
model only has fine structures in one direction, using the
HIE-FDTD method increases efficiency due to the much
larger time step size than that of the FDTD method.

III. PARALLELISM WITH THE MPI
LIBRARY

The first step of the parallel FDTD method is the
computational volume division. The computational vol-
ume can be decomposed directly along three directions
in the parallel FDTD method, but this is impossible in the
parallel HIE-FDTD method, because it needs to solve the
tridiagonal matrix equations in the direction of fine struc-
tures. As such, the proposed method in this paper divides
the computational volume in the x- and z-directions,
excluding the y-direction where the fine structures exist.

The computational volume is divided using a Carte-
sian topology in the MPI library. The procedure for
creating a two-dimensional Cartesian topology of the
three-dimensional problem space using the MPI library
is described in [3]. Figure 1 shows the division of
the computational volume into nine subspaces, each of
which corresponds to a process located by its Cartesian
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coordinates. The MPI function MPI Cart shift deter-
mines the ID numbers of processes surrounding a pro-
cess, once the Cartesian topology has been created.
These ID numbers are then used for implementing com-
munications.

Fig. 1. The division of the computational volume using a
two-dimensional Cartesian topology (x-z plane).

Both the HIE-FDTD method and the FDTD method
must solve the boundary condition problem. Therefore,
it is important to determine the necessary components to
transmit after the equal distribution of the problem.

For the FDTD method, updating field components
at (i, j,k) is dependent on the surrounding field compo-
nents. To provide an example, as shown by Fig. 2, the
iteration of Ex component at

(
i+1

/
2, j,k

)
requires Hz

at
(
i+1

/
2, j+1

/
2,k

)
, (i + 1

/
2, j − 1

/
2,k) and Hy at(

i+1
/

2, j−1
/

2,k
)
,
(
i+1

/
2, j+1

/
2,k

)
.

Fig. 2. The iteration of Ex component at (i+1/2, j,k)
using the conventional FDTD method and the surround-
ing field components.

Figure 3 shows that only the components encapsu-
lated by the blue dotted contour designated to PROC4

Fig. 3. The send-receive communications in PROC4
using the parallel FDTD method.

are assigned in the parallel FDTD method. So, to
update Ex component in PROC4, Hy component from
PROC3 is required. As there is no division along the
y-direction, there is no need to transmit Hz component.
Similarly, updating Ez component requires Hy compo-
nent in PROC1, and updating Ey component requires
both Hz and Hx components in PROC1 and PROC3. It
should be noted that PROC4 fulfils the role of both an
emitter and an addressee process, and therefore, must
send the components to the surrounding processes. The
send-receive communications of PROC4 are illustrated
in Fig. 3.

Figure 4 shows the iteration of Ex at (i+1/2, j,k)
using the HIE-FDTD method. Ey at (i+1, j+1/2,k)
and (i+1, j−1/2,k) are also essential, besides Hy and
Hz components that are required in the FDTD method.
Therefore, when implementing the parallel HIE-FDTD

Fig. 4. The iteration of Ex component at (i+1/2, j,k)
using HIE-FDTD method and the surrounding field com-
ponents.
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method, it is important to note that updating Ex com-
ponent requires Ey belonging to PROC7, with Hy com-
ponent belonging to PROC3. To update Ez, it is neces-
sary to receive Ey component belonging to PROC5, with
Hy component from PROC1.

Figure 5 (a) shows the complete communications
between PROC4 and other processes in the parallel HIE-
FDTD method. Figure 5 (b) shows that the parallel HIE-
FDTD method requires the communication of Ey compo-
nent in the x- and z-directions when performing Ex and
Ez iterations. It is the difference between it and the par-
allel FDTD method.

(a)

(b)

Fig. 5. The communications between PROC4 and its
neighboring processes using the parallel HIE-FDTD
method: (a) Overall view and (b) the communication of
Eycomponent in the x- and z-directions.

Assuming that the size of the field components array
is sizex × sizey × sizez, which needs to be augmented
for the reception of the components from neighboring
processes as follows,
Ai (sizex,sizey,sizez)→ Ai (sizex+1,sizey,sizez+1) ,
where A = [E,H] and i = [x,y,z].

The details of the derived data types implementa-
tion, transmission, and reception of field components are
documented in [3]. The procedure for the parallel HIE-
FDTD method is provided here:

1) MPI initialization
2) Read parameters used in simulation

3) Create a two-dimensional Cartesian topology (no
division along the y-direction)

4) Create the derived data types for communications
5) Start updating field components
Update Ey component
Communicate Ey component for updating of Ex and

Ezcomponents
Update Ex and Ez components
Communicate Ex and Ez components
Update the H-field components
Communicate the H-field components
6) End.

IV. NUMERICAL RESULTS
To verify the accuracy and efficiency of the imple-

mentation of the proposed parallel HIE-FDTD method
based on the MPI library, a numerical example of a FSS
is simulated. Figure 6 (a) shows the structure of the FSS.

(a)

(b)

(c)

Fig. 6. The structure of the FSS: (a) overall view of the
FSS, (b) the size of the narrow cross slot unit, and (c) the
size of the wide cross slot unit.
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Its length in both x- and z-directions is 720 mm. The sur-
face comprises two different cross-slot units, as shown in
Figs. 6 (b) and (c).

The narrow cross slot has a width of 6 mm and a
length of 42 mm, and the wide cross slot has a width
of 15 mm and a length of 48 mm. The thickness of the
FSS is 0.235 mm, of which metal is 0.035 mm thick and
the substrate is 0.2 mm thick. The εr of the substrate is
4.5 and σ is 0.004 S/m. The thickness of the metal is
the fine structure of the FSS which greatly confines the
computational efficiency. A plane wave polarized along
the x-direction is incident perpendicular to the FSS.
The excitation source is a modulated Gaussian pulse
with a frequency range from 2.5 GHz to 4 GHz. The
time dependence of the excitation function is given as
follows:

Ex (t) = cos(2π · f re · t)exp
(
−4π

(
(t − t0)

/
τ
)2
)
,

(13)
where f re = 3.125 GHz, τ = 2.67 ns, and t0 = 0.9τ =
2.4 ns.

One observation point is located at 120 mm behind
the center of the surface. We use the serial FDTD, the
serial HIE-FDTD method, and the parallel HIE-FDTD
method to compute the electric field at the observation
point and the transmission coefficient of the FSS. The
minimum grids in the x- and z-directions are 1 mm. In
the y-direction, the minimum grid is 0.035 mm. The
total number of grids is 396×35×396. According to the
time stability condition, the time step size in the FDTD
method is

∆t f = 1
/

c
√

1
/

∆x2 +1
/

∆y2 +1
/

∆z2 =0.0583 ps,
while in the HIE-FDTD method, the time step is

∆t = 1
/

c
√

1
/

∆x2 +1
/

∆z2 =2.36 ps, which is
40.48 times larger than that in the FDTD method. The
simulation history is 8 ns, which can ensure the complete
convergence of time-domain signals. It corresponds to
323,842 time steps in the FDTD method and 8000 time
steps in the HIE-FDTD method. The simulation is imple-
mented on Intel(R) Xeon(R) Gold 6248R with 3.00 GHz
CPU and 1 TB memory.

Figure 7 shows the value of Ex component at the
observation point calculated by using the parallel HIE-
FDTD method, the serial HIE-FDTD method, and the
serial FDTD method. Figure 8 presents the calculated
transmission coefficient of the FSS. From these figures,
it is obvious that the calculated results of the parallel
HIE-FDTD agree very well with those of the serial HIE-
FDTD method and the serial FDTD method, whether
in the time domain or frequency domain. The transmis-
sion coefficient of the FFS exceeds 0.9 within the range
from 2.9 GHz to 3.65 GHz. Figures 7 and 8 validate the
high computational accuracy of the parallel HIE-FDTD
method.

Fig. 7. The value of the Ex components at the observa-
tion point calculated by using the proposed parallel HIE-
FDTD method, the serial HIE-FDTD method, and the
serial FDTD method.

Fig. 8. The result of the transmission coefficient of
the FSS calculated by using the proposed parallel HIE
method, the serial HIE-FDTD method, and the serial
FDTD method.

Table 1 displays the computation time of the serial
FDTD method, the serial HIE-FDTD method, and the
parallel HIE-FDTD method with 32 processes. We also
introduce the speedup factors Sp (k) with the following
definition:

Sp(k) =
p×Run time with p cores

Run time with k cores
, (14)

where p is the reference number of processors and k is
the number of processors used in calculation. S1 (k)of the
proposed method is showed in Fig. 9.

The results demonstrate that the simulation speed of
the serial HIE-FDTD method is 29.3 times faster than
the serial FDTD, which is due to the larger time step in
the HIE-FDTD method. Moreover, the simulation speed
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Table 1: The time step size, total time steps, and comput-
ing time of different methods

Method ∆t(ps) Total Steps Computing
Time (h)

FDTD 0.0583 323,842 901.40
HIE-FDTD 2.36 8000 30.77

P-HIE-FDTD 2.36 8000 1.18

Fig. 9. S1 (k) obtained for a space size of 396×35×396
in case of the proposed parallel HIE-FDTD method.

of the proposed parallel HIE-FDTD method with 32
processes is 25 times faster than the serial HIE-FDTD
method. The parallel efficiency of the proposed method
reaches 81.2 %. It can conclude that the proposed paral-
lel HIE-FDTD method considerably reduces the runtime
over the serial FDTD and the serial HIE-FDTD, while
the accuracy of the proposed method is still maintained.

The parallel efficiency of the proposed method is
defined as δ = T1

/
Tnn. Here, T1 represents the comput-

ing time of the HIE-FDTD method with a single pro-
cess; n is the number of the processes and Tn is the com-
puting time of the HIE-FDTD method with n processes.
Table 2 presents the computing time and the parallel effi-

Table 2: Comparison of computation efficiency

Number of
Processes

Number of
Subdomains

Computing
Time (s)

Parallel
Efficiency

δ

1 1×1×1 6652.02 100%
2 2×1×1 3496.58 95.1%
4 2×1×2 1812.13 91.8%
8 4×1×2 952.54 87.3%
12 4×1×3 687.61 80.6%
25 5×1×5 318.16 83.6%
30 6×1×5 268.99 82.4%
32 8×1×4 256.00 81.2%

ciency of the proposed parallel HIE-FDTD method. It
can be observed that the efficiency maintains above 80%
for different numbers of processes, which proves that this
method is very suitable for parallel computing.

V. CONCLUSION
This paper describes a parallel HIE-FDTD method

implemented through the MPI library. Parallel comput-
ing is realized by creating a two-dimensional topology
that divides the computational volume along two
directions. The differences of the field components
transmitted between the parallel HIE-FDTD method and
parallel FDTD method are discussed. The function for
communication and derived data types provided by the
MPI library are employed to transmit HIE-FDTD field
components. The numerical example indicates the high
computational accuracy and excellent parallel efficiency
of the proposed method. It shows that the parallel effi-
ciency maintains above 80% for different numbers of
processes, which proves that this method is very suitable
for parallel computing.
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