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Abstract – In this paper, a fast Cross Coupling iterative
Approach (CCIA) is proposed for studying the compos-
ite scattering of the layered rough surfaces with buried
target, which uses forward backward method (FBM) to
solve the electric field integral equations (EFIE) of the
layered rough surface and bi-conjugate gradient method
(BI-CG) to solve the EFIE of the target, and the interac-
tion between the rough surface and the target is achieved
by updating the excitation term. The algorithm is applied
to calculate the composite scattering coefficients of the
rough surface with a buried target, the results match with
those of the traditional numerical algorithm MOM while
the error can be reduced to 10−3 by 6 iterations, and
the convergence speed and calculation accuracy meet the
requirements. The composite scattering coefficients and
Angular Correlation Function (ACF) amplitudes of lay-
ered rough surface and dielectric targets with different
conditions are calculated, and the effects of various fac-
tors such as target size and burial depth on the composite
scattering characteristics are discussed. It is found that
the buried targets will have a great influence on the scat-
tering characteristics, weakening or neglecting the cou-
pling between them will lead to larger errors. Moreover,
the results show that ACF can suppress scattering from
rough surfaces well, making the scattering characteris-
tics of the target more obvious, which is important for
detecting underground targets.

Index Terms – Cross Coupling iterative Approach
(CCIA), Electric Field Integral Equations (EFIE), Angu-
lar Correlation Function (ACF), composite scattering
characteristics.

I. INTRODUCTION
The study of electromagnetic characteristics [1–5]

of targets and environment has a very important role in
the field of remote sensing information processing and
target identification: in the field of remote sensing infor-
mation processing [6–9], it is necessary to analyze and
study the electromagnetic characteristics of remote sens-

ing environment and targets, and to design and manufac-
ture sensors to match them in order to obtain the best tar-
get remote sensing information. Radar is one of the most
commonly used sensors for target remote sensing, which
uses electromagnetic signals to sense targets and has the
ability to work around the clock. Therefore, analyzing
and acquiring target and environment features, and estab-
lishing a database of target and environment features are
very important for remote sensing information process-
ing. On the other hand, target and environment feature
extraction and identification [10–13] is the basic tech-
nology to realize battlefield precision perception, preci-
sion strike and missile attack and defense confrontation,
so target feature signal extraction and identification tech-
nology is the advanced stage of target and environment
feature research, target and environment electromagnetic
scattering feature analysis is the basis of target identifi-
cation, and the model-based target identification method
depends largely on the target and environment electro-
magnetic scattering feature modeling accuracy. There are
usually two methods to obtain environmental and tar-
get characteristics: real measurements and simulations.
Although the results of real measurements are highly
reliable, the cost of real measurements is high and it is
difficult to obtain complete scattering characteristics data
due to many practical conditions. With the rapid develop-
ment of computer technology, it is becoming easier and
easier to realize 3D reconstruction of complex targets
and high accuracy of electromagnetic calculation prob-
lems by using its powerful computing power.

Zou [14] introduced the single integral equation-
Kirchhoff approximation (SIE-KA) hybrid method with
a multilevel fast multipole algorithm (MLFMA) to
accelerate the computation to solve complex scattering
problems in coastal environments containing conduc-
tor and dielectric targets, and presented many practi-
cal ideas in remote sensing. Liang [15] established a
composite scattering model based on the propagation-
inside-layer expansion + generalized forward-backward
method (EPILE+GFBM), studied the coupling mecha-
nism between sea surface-missile-ship, and discussed the
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effects of different states of the target (such as attitude,
position, and rotation angle) on the composite scatter-
ing characteristics. The results of the study are instruc-
tive for target detection, identification, and imaging in
the marine environment. Zou [16] established a natu-
ral valley model, simulated the cavity structure of the
valley, and proposed the SBR-EEC method to solve the
compound scattering problem existing in ultra-low alti-
tude targets in the valley. It is found that the cavity in
the valley has a great influence on the composite scat-
tering, which will affect the detection and identification
accuracy of targets in the environment. Based on the
traditional FBAM and GO/PO hybrid methods, Li [17]
proposed an acceleration algorithm that can effectively
reduce the occlusion judgment. Experiments prove that
the algorithm is effective for SAR imaging of ships in the
marine environment, and the electromagnetic scattering
characteristics of multi-ship targets in the marine envi-
ronment are studied based on the algorithm. Wang [18]
proposed an algorithmic model for composite scattering
of environment with target, derived the integral equations
for each computational domain in the complex model,
solved them one by one using a hybrid method of CFIE
and EFIE, and accelerated the matrix computation using
the multilevel fast multipole algorithm (MLFMA) in the
computation process.

In this paper, we focus on the composite scattering
problem of layered rough surface with target. Firstly, in
order to solve the problem of low computational effi-
ciency of traditional algorithms, the CCIA algorithm is
proposed, which uses FBM to solve the EFIE of the
layered rough surface and BI-CG to solve the EFIE of
the target, and the interaction between the rough sur-
face and the target is achieved by updating the excitation
term. And the effectiveness of the proposed algorithm is
demonstrated by computational examples. Then the cou-
pling effect between the rough surface and the target is
studied by this algorithm, and their composite scattering
coefficients are calculated, it is found that the coupling
effect has a great influence on the composite scattering.
Finally, the ACF of the composite environment is investi-
gated, and the results show that the ACF is greatly influ-
enced by the target size, and the ACF can well suppress
the scattering from rough surfaces, which is important
for detecting subsurface targets.

II. COMPOSITE SCATTERING
CALCULATION MODEL

A. Coupled boundary integral equations of layered
rough surface and dielectric target

A typical spherical medium target is located in zone
II, the second layer of the medium, as shown in Fig. 1.
Zone O denotes free space, usually air; Zone I denotes
rough surface 1 and Zone II denotes rough surface 2,
which usually have different dielectric constants.
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FIGURE 1.  Graphics of dielectric target and rough surfaces 
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Fig. 1. Graphics of dielectric target and rough surfaces.

When the size of the target is infinitely small (which
can be considered as no target), the boundary integral
equation of the stratified rough surface is:
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In the above equation, n̂i is the normal vector in zone

i with the direction vertically upward, r represents the
field point, r′ represents the source point, gi(r,r′)is the
Green’s function in zone i, and there is
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The target surface is denoted by fc and the rough
surface is denoted by fi(x)(i = 2,3 denotes the upper
and lower rough surfaces, respectively). ψ inc denotes the
incident wave and ψi is the total field in the i region.

And when there is a non-negligible target (sphere)
on the stratified rough surface, Eq. (2) can be rewritten as
1
2

ψ1(r) =
∫

f2(x)

[
ψ1(r)n̂2 ·∇g1

(
r,r′

)
−g1

(
r,r′

)
n̂2 ·∇ψ1(r)

]
ds

−
∫

f1(x)

[
ψ1(r)n̂1 ·∇g1

(
r,r′

)
−g1

(
r,r′

)
n̂1 ·∇ψ1(r)

]
ds

+
∫
f0

[
ψ1(r)n̂op ·∇g1

(
r,r′

)
−g1

(
r,r′

)
n̂op ·∇ψ1(r)

]
ds.

(7)
where n̂op is the normal vector of the target surface with
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and this partial integral in Eq. (7) represents the target’s
contribution to the total field.

The scattered field within the target is:
1
2

ψ3(r) =−
∫
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[ψ3(r)n̂op ·∇g3(r,r′)−g3(r,r′)n̂op ·∇ψ3(r)]ds.

(8)
Then we obtained the surface integral equations for

the stratified rough surface and the medium target. Their
boundary conditions under TM and TE waves are as fol-
lows, respectively. TE:
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Using the basis function to discrete the above set of
equations, let the length of the rough surface is L, the
discrete density is ∆x, and the total discrete number is
N; the dielectric target surface discrete density is ∆x0,
and the total discrete number is M. The following matrix
equation can be obtained:
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Where when a = c, w(a,c) = 1; when a̸=c, w(a,c) =

−1. And ρl = µl/µl−1 for TE wave, ρl = εl/εl−1 for
TE wave, Ui(x) =

∂ψi(r)
∂n′

√
1+(∂Sl/∂x)2

∣∣∣
r∈Si

, ψi(x) =

ψi(r)|r∈Si
. The three superscripts in the upper right cor-

ner of the matrix elements represent: the first num-
ber indicates the region, the second number indicates

the rough surface where the field point is located, and
the third number indicates the rough surface where the
source point is located. The specific meaning of each
parameter can be found in the literature (19), which is
not repeated here considering the length of the article.

Solving the above matrix equations yields compos-
ite electromagnetic scattering results for rough surfaces
and targets, and it should be noted that computational
accuracy and computational time should be consid-
ered when solving. However, since the MoM numeri-
cal method [20-22] is based on strict Maxwell equations
and boundary conditions, it includes various interac-
tions between electromagnetic waves and rough surfaces
(especially multiple scattering between cells on rough
surfaces), and is theoretically an accurate solution
method that has been widely used in scattering calcula-
tions. However, numerical simulations of scattering from
rough surfaces often need to consider taking a suffi-
ciently long rough surface for the calculation, especially
under the conditions of low grazing angle incidence and
moderate rough surface, where a large unknown quantity
is generated after the dissection, making the conventional
MoM a great challenge. For this reason, relevant fast
algorithms must be used to accelerate the calculation.

B. Cross coupling iterative approach (CCIA)
Therefore, in order to solve this problem and

improve the practicality of the algorithm, Cross Coupling
iterative Approach (CCIA) is proposed in this paper,
which overcomes the limitations of the traditional MoM
by considering both the computational accuracy and the
computational speed in solving the composite scattering
of the layered rough surface and the medium target. The
basic principle is that while considering the interaction
between the layered rough surface and the dielectric tar-
get, the surface integral equation of the layered rough
surface is solved by FBM and the surface integral equa-
tion of the target is solved by Bi-CG, and then the set of
equations is solved by iteration. the computational vol-
ume and memory required by the CCIA method is only
O(N2), which greatly improves the computational effi-
ciency.

Rectifying Eqs. (11-16), the following matrix equa-
tion can be obtained:

A(0,1,1) B(0,1,1) 0 0
ρ1A(1,1,1) B(1,1,1) A(1,1,2) B(1,1,2)

ρ1A(1,2,1) B(1,2,1) A(1,2,2) B(1,2,2)

0 0 ρ2A(2,2,2) B(2,2,2)
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Where
ψ

I
Tar =−CI ·U0 −DI ·ψ0, (21)

ψ
2
Tar =−E ·U0 −F ·ψ0, (22)
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ψ
Sur =−F(1) ·U1 −H(1) ·ψ1 − I(2) ·U2 − J(2) ·ψ2. (23)

In the above equations, the surface current distribu-
tions of the stratified rough surface and the target can
be obtained by solving the matrix Eqs. (19) and (20),
respectively. ψ i

Tar denotes the scattering effect of the tar-
get on the rough surface, superscript i=1 denotes the
upper rough surface, superscript i=2 denotes the lower
rough surface; ψSur denotes the scattering effect of the
layered rough surface on the target. Thus, the rough sur-
face and the target do not exist in isolation, they are not
only irradiated by the incident waves, but also influence
each other.

During the iteration, the excitation term on the right-
hand side of the matrix Eqs. (19-20) are continuously
updated and Eqs. (19-20) become:

Z0 · I(i)0 =
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Where the upper corner marker i denotes the number
of iteration steps, I(i)0 denotes the current distribution on

the rough surface, I(i)1 denotes the current distribution on
the target surface, ψ1

Tar(i) denotes the target excitation on
the upper rough surface, ψ2

Tar(i) denotes the target exci-
tation on the lower rough surface, and ψsur(i) denotes
the target excitation on the layered rough surface.

Then, each matrix is decomposed into three parts,
namely the upper matrix U, the lower matrix D and the
diagonal matrix L, and the forward backward method
(FBM) method is used to solve Eq.(24), and the equa-
tions for the forward current are:
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Where Ul = Ul
f +Ul

b, ψl = ψl
f + ψl

b, f and b
denote the forward and backward components obtained
after decomposition of the unknown components,
respectively.

The initial values of the iteration are Ub,(0)
1 = 0,

ψ
b,(0)
1 = 0, Ub,(0)

2 = 0, ψ
b,(0)
2 = 0, the initial values are

substituted into Eq. (24) to update the solution to obtain
U1, ψ1, U2 and ψ2. Then U1, ψ1, U2, ψ2 are substituted
into Eq. (25) to obtain U0, and the updated ψ1

Tar and
ψ2

Tar are calculated and then substituted into Eq. (24).
Repeat this iterative process until the specified conver-
gence accuracy is reached. Eq. (24) can be solved by
the FBM method, while Eq. (25) needs to be solved by
the bi-conjugate gradient method (Bi-CG). The iteration
error of step i is:

τ(i) =

∣∣∣∣∣Z1 · [I(i)1 − I(i−1)
1 ]

V (i)
1

∣∣∣∣∣ . (30)

The calculation achieves multiple scattering calcula-
tions of the layered rough surface and the target by con-
tinuously updating the excitation terms of the two equa-
tions until the iterative error meets the specified conver-
gence accuracy.

C. Conical incident wave
In order to apply the numerical algorithm, the area

calculated by the rough surface is bounded in a certain
range. For the two-dimensional scattering problem, in
order to limit the rough surface to L, i.e., |x| ≤ L

/
2, the

surface current is artificially specified to be zero when
|x| > L

/
2. In this way, the surface current has a sudden

change at x=±L
/

2, and if a plane wave is used, this will
cause artificial reflections at both endpoints.

In order to solve this problem, one of the methods is
to set the edge as a periodic boundary, but this method
has a certain approximation, and the error is not easy
to determine, so it is generally not desirable; the second
method is to select the incident wave as a conical wave,
that is, the incident wave has Gaussian characteristics,
when close to the boundary, the incident wave tends to
zero, so as to avoid the abrupt change of the surface cur-
rent. Using the widely used Thorsos conical wave, which
can well satisfy the Helmholtz fluctuation equation, the
one-dimensional conical wave is [23]

ψ
inc(r) = exp[ik(xsinθi − zcosθi) · (1+w(r))]

· exp[− (x+ z tanθi)
2

g2 ], (31)

where θi is the angle of incidence (labeled in Fig. 1) and
g is the beamwidth factor, which determines the width of
the window function.

Figure 2 represents the distribution of the amplitude
of the incident wave on the surface.
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Where the upper corner marker i denotes the number of 

iteration steps, 
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i
I  denotes the current distribution on the 

rough surface, 
( )

1

i
Ι  denotes the current distribution on the 

target surface, 
1 ( )Tar iψ  denotes the target excitation on the 

upper rough surface, 
2 ( )Tar iψ  denotes the target excitation on 

the lower rough surface, and ( )sur iψ  denotes the target 

excitation on the layered rough surface. 

Then, each matrix is decomposed into three parts, namely 

the upper matrix U, the lower matrix D and the diagonal 
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Where 
f b

l l l U U U , 
f b

l l l ψ ψ ψ , f and b denote the 

forward and backward components obtained after 

decomposition of the unknown components, respectively.  

The initial values of the iteration are 
,(0)

1 0b U ,
,(0)

1 0b ψ ,
,(0)

2 0b U ,
,(0)

2 0b ψ , the initial values 

are substituted into Eq.(24) to update the solution to obtain 

1U , 
1ψ , 

2U and 
2ψ . Then 

1U ,
1ψ ,

2U ,
2ψ are substituted into 

Eq.(25) to obtain 
0U , and the updated 1

Tarψ  and 2

Tarψ  are 

calculated and then substituted into Eq.(24). Repeat this 

iterative process until the specified convergence accuracy is 

reached. Eq.(24) can be solved by the FBM method, while 

Eq.(25) needs to be solved by the bi-conjugate gradient 

method (Bi-CG). The iteration error of step i is: 
1 ( ) ( 1)

1 1

( )

1

[ ]
( )

i i

i
i

 


Z I I

V
                         (30) 

The calculation achieves multiple scattering calculations of 

the layered rough surface and the target by continuously 

updating the excitation terms of the two equations until the 

iterative error meets the specified convergence accuracy. 

C. Conical incident wave 

In order to apply the numerical algorithm, the area calculated 

by the rough surface is bounded in a certain range. For the 

two-dimensional scattering problem, in order to limit the 

rough surface to L, i.e., 2Lx  , the surface current is 

artificially specified to be zero when 2Lx  . In this way, 

the surface current has a sudden change at 2x L  , and if a 

plane wave is used, this will cause artificial reflections at both 

endpoints.  

In order to solve this problem, one of the methods is to set 

the edge as a periodic boundary, but this method has a certain 

approximation, and the error is not easy to determine, so it is 

generally not desirable; the second method is to select the 

incident wave as a conical wave, that is, the incident wave has 

Gaussian characteristics, when close to the boundary, the 

incident wave tends to zero, so as to avoid the abrupt change 

of the surface current. Using the widely used Thorsos conical 

wave, which can well satisfy the Helmholtz fluctuation 

equation, the one-dimensional conical wave is[23] 
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(31) 
where 

i  is the angle of incidence (labeled in Figure 1) and g 

is the beamwidth factor, which determines the width of the 

window function. 

Fig.2 represents the distribution of the amplitude of the 

incident wave on the surface.  

 
FIGURE 2.  Amplitude distribution of one-dimensional conical incident waves 

 

In Eq.(31), the wave vector of the incident wave is 
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The width g is an important physical quantity that 

determines the incident width of the incident wave and the 

length of the rough surface. The larger the value of g, the 

greater the incident width of the incident wave and the greater 

the length of the rough surface. The larger the value of g, the 

more the numerical calculation can reflect the average 

scattering characteristics of the rough surface, and the more 

accurate the numerical calculation is, but it needs to consume 

more storage and calculation time. Therefore, the choice of g 

should consider both the accuracy of the calculation results 

and the calculation efficiency: the conical width g is 

determined by the incident angle, while the rough surface 

length L is determined by g. The expression is 

 
1.5

6
4

cos i

g L g


 ，                      (33) 

III.  Algorithm validation 

In this subsection, the parameters of the rough surface and the 

target are: 1 0.13h  , 1 40L  , 1 1.0l  , 1 4.0 0.01r i   , 

Fig. 2. Amplitude distribution of one-dimensional coni-
cal incident waves.

In Eq. (31), the wave vector of the incident wave is
ki = k (x̂sinθi − ẑcosθi) , (32)

w(x,z) =
1

(kgcosθi)2 [2
(x+ z tanθi)

2

g2 −1]. (33)

The width g is an important physical quantity that
determines the incident width of the incident wave and
the length of the rough surface. The larger the value of
g, the greater the incident width of the incident wave and
the greater the length of the rough surface. The larger
the value of g, the more the numerical calculation can
reflect the average scattering characteristics of the rough
surface, and the more accurate the numerical calculation
is, but it needs to consume more storage and calculation
time. Therefore, the choice of g should consider both
the accuracy of the calculation results and the calcula-
tion efficiency: the conical width g is determined by the
incident angle, while the rough surface length L is deter-
mined by g. The expression is

g ≥ 6

(cosθi)
1.5 L = 4g. (34)

III. ALGORITHM VALIDATION
In this subsection, the parameters of the rough sur-

face and the target are: h1 = 0.13λ , L1 = 40λ , l1 = 1.0λ ,
εr1 = 4.0 + 0.01i, d = 6.0λ , h2 = 0.08λ , L2 = 40λ ,
l2 = 1.0λ , εr2 = 7.0, θi = 20o, g = L/6, d p = 3.0λ ,
R = 1.0λ , εc = 2.25. Where hi is the root mean square
height of the rough surface, Li is the length of the rough
surface, li is the correlation length, εri is the dielectric
constant of the rough surface, where i=1 represents the
upper rough surface and i=2 represents the lower rough
surface, εc is the dielectric constant of the target, d p is
the burial depth of the target, R is the radius of the sphere,
and d is the thickness of the rough surface.

This subsection focuses on verifying the effective-
ness of the CCIA algorithm proposed in this paper in
terms of both computational efficiency and computa-
tional accuracy.

The MOM numerical algorithm is a solution method
with high accuracy, and although it is relatively slow, it
is undoubtedly suitable and more convincing as a valida-
tion algorithm due to its accurate calculation. In this sub-
section, both the algorithm of this paper and the MOM
method are used to calculate the composite bistatic scat-
tering coefficients for the layered rough surface and the
dielectric target, and the calculation results are shown in
Fig. 3.

Figure 3 (a) shows the calculation results of TE
waves, and Fig. 3 (b) shows the calculation results of TM
waves. From these two figures, it can be seen that the cal-
culation curves of CCIA and MOM almost overlap for
both TE incident wave and TM incident wave, indicat-

(a) TE incident wave

(b) TM incident wave

Fig. 3. Comparison of calculation results of different
methods.
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ing that their calculation results are extremely close, thus
verifying the correctness of the method.

Table 1: Comparison of time consumed
Method Time Consumption (sec)
CCIA 357
MoM 2109

Table 1 shows the time consumed for two differ-
ent methods. It is evident that CCIA requires only 357
seconds of computation time, while MoM takes 2109
seconds. The CCIA method greatly reduces the compu-
tational time and significantly improves computational
efficiency.

Figure 4 shows the variation of the iteration error
τ(i) with the number of iteration steps i during the cal-
culation. When CCIA is used to calculate the compos-
ite scattering of rough surfaces and targets, the iteration
error in both cases can be reduced to 10−3 after 6 itera-
tions, and the convergence speed is relatively fast, which
can meet the calculation requirements. It indicates that
the algorithm improves the computational speed while
ensuring the computational accuracy, which is consistent
with the expectation.

 

 

6.0d  , 2 0.08h  , 2 40L  , 2 1.0l  , 2 7.0r  ,

20o

i  , / 6g L , 3.0dp  , 1.0R  , 2.25c  . Where 

ih  is the root mean square height of the rough surface, iL  is 

the length of the rough surface, il  is the correlation length, 

ri  is the dielectric constant of the rough surface, where i=1 

represents the upper rough surface and i=2 represents the 

lower rough surface, c  is the dielectric constant of the target, 

dp  is the burial depth of the target, R is the radius of the 

sphere, and d is the thickness of the rough surface. 

This subsection focuses on verifying the effectiveness of 

the CCIA algorithm proposed in this paper in terms of both 

computational efficiency and computational accuracy. 

The MOM numerical algorithm is a solution method with 

high accuracy, and although it is relatively slow, it is 

undoubtedly suitable and more convincing as a validation 

algorithm due to its accurate calculation. In this subsection, 

both the algorithm of this paper and the MOM method are 

used to calculate the composite bistatic scattering coefficients 

for the layered rough surface and the dielectric target, and the 

calculation results are shown in Fig.3. 
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FIGURE 3.  Comparison of calculation results of different methods 

 

Fig.3(a) shows the calculation results of TE waves, and 

Fig.3(b) shows the calculation results of TM waves. From 

these two figures, it can be seen that the calculation curves of 

CCIA and MOM almost overlap for both TE incident wave 

and TM incident wave, indicating that their calculation results 

are extremely close, thus verifying the correctness of the 

method. 
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Table 1 shows the time consumed for two different 

methods. It is evident that CCIA requires only 357 seconds of 

computation time, while MoM takes 2109 seconds. The CCIA 

method greatly reduces the computational time and 

significantly improves computational efficiency. 

Fig.4 shows the variation of the iteration error ( )i with the 

number of iteration steps i during the calculation. When 

CCIA is used to calculate the composite scattering of rough 

surfaces and targets, the iteration error in both cases can be 

reduced to 10-3 after 6 iterations, and the convergence speed is 

relatively fast, which can meet the calculation requirements. It 

indicates that the algorithm improves the computational speed 

while ensuring the computational accuracy, which is 

consistent with the expectation. 
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FIGURE 4.  Iterative error curve 
 

IV.  Calculation results and analysis 

A. Effect of target on compound scattering 

In this subsection, the parameters of the rough surface and the 

target are: 1 0.13h  , 1 40L  , 1 0.16l  , 1 4.0 0.01r i   , 

6.0d  , 2 0.08h  , 2 40L  , 2 0.16l  , 2 7.0r  ,

20o

i  , / 6g L , 3.0dp  , 1.0R  , 2.25c  . 

In the study, the radii of the spheres are set as 1.0R   

and 2.0R  , respectively, and other parameters are kept 

constant to study the effects of different sizes of spheres on 

the composite scattering, and the results are shown in Figure 5. 

Observing Figure 5, it can be found that the scattering 

coefficient increases significantly after the introduction of the 

medium target relative to the rough surface without a target, 

which is caused by the mutual coupling effect between the 

target and the rough surface, and as the target volume 

increases, the distance between the target and the upper and 

lower rough surfaces shortens, the mutual coupling effect 

becomes stronger, and the scattering coefficient shows an 

enhanced trend, and the influence on the scattering 

characteristics of the layered rough surface becomes more and 

more obvious. Therefore, when studying the problems related 

to the target and the environment, the coupling effect between 

them must be taken into account. 

Fig. 4. Iterative error curve.

IV. CALCULATION RESULTS AND
ANALYSIS

A. Effect of target on compound scattering
In this subsection, the parameters of the rough sur-

face and the target are: h1 = 0.13λ , L1 = 40λ , l1 =
0.16λ , εr1 = 4.0+ 0.01i, d = 6.0λ , h2 = 0.08λ , L2 =
40λ , l2 = 0.16λ , εr2 = 7.0, θi = 20◦, g = L/6, d p =
3.0λ , R = 1.0λ , εc = 2.25.

In the study, the radii of the spheres are set as R =
1.0λ and R = 2.0λ , respectively, and other parameters
are kept constant to study the effects of different sizes of

spheres on the composite scattering, and the results are
shown in Fig. 5. Observing Fig. 5, it can be found that
the scattering coefficient increases significantly after the
introduction of the medium target relative to the rough
surface without a target, which is caused by the mutual
coupling effect between the target and the rough surface,
and as the target volume increases, the distance between
the target and the upper and lower rough surfaces short-
ens, the mutual coupling effect becomes stronger, and the
scattering coefficient shows an enhanced trend, and the
influence on the scattering characteristics of the layered
rough surface becomes more and more obvious. There-
fore, when studying the problems related to the target
and the environment, the coupling effect between them
must be taken into account.

(a) TE incident wave

(b) TM incident wave

Fig. 5. Effect of target on compound scattering.

B. Effect of target depth on compound scattering
The target depths are set as d p = 1.0λ , d p = 2.0λ ,

d p = 3.0λ , respectively, and the effects of different
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target depths on the target-environment scattering char-
acteristics are investigated. Figure 6 shows that the com-
posite scattering is almost unaffected by the target depth.
While keeping the target volume constant, the target
depth increases, its coupling with the upper rough sur-
face decreases, and the coupling with the lower rough
surface increases, so no big difference appears in gen-
eral. In contrast, this variation is more pronounced at TM
wave incidence.

(a) TE incident wave

(b) TM incident wave

Fig. 6. Effect of target on compound scattering.

C. The effect of coupling on compound scattering
In this subsection, the coupling effects of the upper

and lower rough surfaces and the rough surface-target
coupling are mainly discussed. First, the scattering char-
acteristics of a monolayered rough surface with dielectric
constant εr1 = 4.0+0.01i are investigated, and the scat-
tering coefficients are calculated for no rough surface-
rough surface coupling and no rough surface-target cou-
pling; then, keeping other parameters constant, a second

layer of rough surface with dielectric constant εr2 =
4.0+ 0.01i is set at depth d = 6.0λ , and the scattering
coefficients are calculated for only the rough surface-
rough surface coupling action. Keeping the parameters
unchanged, a dielectric target is next introduced in the
upper rough surface with target depth d p = 3.0λ , R =
1.0λ , and dielectric constant εc = 4. The scattering coef-
ficient is calculated again when multiple coupling exists.
The scattering characteristic curves of the above three
cases are shown in Fig. 7.

Fig. 7. The effect of coupling on compound scattering.

Figure 7 illustrates that the scattering coefficient of
the layered rough surface increases significantly (com-
pared to the single-layer rough surface) due to the cou-
pling between the layers. This indicates that the coupling
between the upper and lower layers is also an important
component of the layered rough surface. The scattering
coefficient continues to increase after the target is buried
in the rough surface. It can be seen that the second mag-
nitude is significantly stronger than the first one, indicat-
ing a strong coupling effect between the rough surface
and the target. When studying electromagnetic scattering
in complex environments, ignoring this coupling effect
will lead to large errors.

D. ACF (Angular Correlation Function) characteris-
tics for composite environments

The study of ACF is also an important part of
the study of scattering in a composite environment. Its
expression is [24]

Γ(θs1,θi1,θs2,θi2)

= ⟨ψs(θs1,θi1) ·ψ∗
s (θs2,θi2)⟩/

√
W1W2

=
1
Nr

Nr

∑
q=1

ψs(θs1,θi1,q) ·ψ∗
s (θs2,θi2,q)/

√
W1W2. (35)
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Where

W1 =

√
π

2
gcosθi1(1−

1+2tan2 θi1

2k2
0g2 cos2 θi1

), (36)

W2 =

√
π

2
gcosθi2(1−

1+2tan2 θi2

2k2
0g2 cos2 θi2

). (37)

Finally, the ACFs of the layered rough surface and
the buried target layered rough surface were calculated
and plotted in Fig. 8. Figure 8 illustrates that when there
is no target, the ACF amplitude of the rough surface is
relatively small (less than 0.05). After the target is buried
in the rough surface, the scattering at this time consists
of both the rough surface and the target, and the ACF
amplitude increases significantly and is positively cor-
related with the size of the target. While changing the
burial depth of the target with the same size of the target,
the ACF amplitude gradually decreases with the increase
of the target depth, which is due to the increase of the
target depth and the decrease of his interaction with the

 

 

indicating a strong coupling effect between the rough surface 

and the target. When studying electromagnetic scattering in 

complex environments, ignoring this coupling effect will lead 

to large errors. 

D. ACF（Angular Correlation Function）  characteristics for 

composite environments 

The study of ACF is also an important part of the study of 

scattering in a composite environment. Its expression is[24] 
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Finally, the ACFs of the layered rough surface and the 

buried target layered rough surface were calculated and 

plotted in Fig.8. Fig.8 illustrates that when there is no target, 

the ACF amplitude of the rough surface is relatively small 

(less than 0.05). After the target is buried in the rough surface, 

the scattering at this time consists of both the rough surface 

and the target, and the ACF amplitude increases significantly 

and is positively correlated with the size of the target. While 

changing the burial depth of the target with the same size of 

the target, the ACF amplitude gradually decreases with the 

increase of the target depth, which is due to the increase of the 

target depth and the decrease of his interaction with the rough 

surface. The graphical results show that the target size is an 

important factor affecting the ACF, and the ACF can well 

suppress the scattering from the rough surface and make the 

scattering characteristics of the target more significant, which 

is important for the detection of subsurface targets. 
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FIGURE 8.  ACF characteristics for different conditions 
 

V. Conclusion 

This paper focuses on the composite scattering characteristics 

of layered rough surfaces and buried targets. Firstly, the 

CCIA algorithm model is established, the EEIF of the rough 

surface with the target are calculated by FBM and BI-CG 

respectively, and the coupling effect is realized by 

continuously updating the excitation term. By comparing the 

results with those of MOM, it is proved that the 

computational accuracy and computational speed of CCIA 
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the target are calculated by this algorithm, it is found that the 
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has little effect on the composite scattering characteristics due 

to the coupling effect between the target with the upper-lower 

rough surfaces. Finally, its ACF is studied, it is found that the 

target size is an important factor affecting the ACF, and the 

ACF can well suppress the scattering from the rough surface 

and make the scattering characteristics of the target more 

significant, which is important for detecting subsurface 

targets.  
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indicating a strong coupling effect between the rough surface 

and the target. When studying electromagnetic scattering in 

complex environments, ignoring this coupling effect will lead 

to large errors. 

D. ACF（Angular Correlation Function）  characteristics for 

composite environments 

The study of ACF is also an important part of the study of 

scattering in a composite environment. Its expression is[24] 
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Finally, the ACFs of the layered rough surface and the 

buried target layered rough surface were calculated and 

plotted in Fig.8. Fig.8 illustrates that when there is no target, 

the ACF amplitude of the rough surface is relatively small 

(less than 0.05). After the target is buried in the rough surface, 

the scattering at this time consists of both the rough surface 

and the target, and the ACF amplitude increases significantly 

and is positively correlated with the size of the target. While 

changing the burial depth of the target with the same size of 

the target, the ACF amplitude gradually decreases with the 

increase of the target depth, which is due to the increase of the 

target depth and the decrease of his interaction with the rough 

surface. The graphical results show that the target size is an 

important factor affecting the ACF, and the ACF can well 

suppress the scattering from the rough surface and make the 

scattering characteristics of the target more significant, which 

is important for the detection of subsurface targets. 
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rough surface. The graphical results show that the tar-
get size is an important factor affecting the ACF, and the
ACF can well suppress the scattering from the rough sur-
face and make the scattering characteristics of the target
more significant, which is important for the detection of
subsurface targets.

V. CONCLUSION
This paper focuses on the composite scattering char-

acteristics of layered rough surfaces and buried targets.
Firstly, the CCIA algorithm model is established, the
EEIF of the rough surface with the target are calcu-
lated by FBM and BI-CG respectively, and the coupling
effect is realized by continuously updating the excitation
term. By comparing the results with those of MOM, it
is proved that the computational accuracy and computa-
tional speed of CCIA meet the requirements of practical
calculations. Then the compound scattering coefficients
of the rough surface with the target are calculated by this
algorithm, it is found that the coupling effect between
them has a great influence on the compound scattering
and is positively correlated with the size of the target. It
is also found that the burial depth of the target has lit-
tle effect on the composite scattering characteristics due
to the coupling effect between the target with the upper-
lower rough surfaces. Finally, its ACF is studied, it is
found that the target size is an important factor affecting
the ACF, and the ACF can well suppress the scattering
from the rough surface and make the scattering charac-
teristics of the target more significant, which is important
for detecting subsurface targets.
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