
Strategies for Improving the Use of the Memory Hierarchy in an 
Implementation of the Modified Equivalent Current Approximation 

(MECA) Method 
 
 

Hipólito Gómez-Sousa1, José Á. Martínez-Lorenzo1, Oscar Rubiños-López1, 
Javier G. Meana2, María Graña-Varela1, Borja Gonzalez-Valdes1,  

and Marcos Arias-Acuña1 
 

1 Department of Signal Theory and Communications 
University of Vigo, ETSI de Telecomunicación, Campus Universitario, E-36310 Vigo, Spain 

{hgomez, oscar}@com.uvigo.es  
 

2 Department of Electrical Engineering 
University of Oviedo, Edificio Polivalente de Viesques, Campus Universitario, E-33203 Gijón, Spain 

 
  

Abstract ─ In this paper, we investigate different 
techniques for improving the cache memory use 
when running a parallel implementation of the 
modified equivalent current approximation 
(MECA) method. The MECA method allows the 
analysis of dielectric and lossy geometries, and 
reduces to the well-studied physical optics (PO) 
formulation in case of PEC scatterers. We discuss 
several memory-hierarchy-based optimization 
techniques and present how to implement them in 
C. We show through simulations that these 
optimization strategies are effective for reducing 
the total execution time when calculating the 
scattered fields with a parallel implementation of 
the MECA method. 
  
Index Terms ─ Memory-hierarchy-based 
optimization, parallel programming, physical 
optics (PO). 
 

I. INTRODUCTION 
Physical optics (PO) is a well-known 

asymptotic high frequency computational 
technique that is widely used in computing the 
electromagnetic scattering from electrically large 
and complex structures [1, 2]. In contrast to full 
wave methods, like the method of moments 
(MoM), PO does not need a huge amount of 
computational resources to solve these problems 
with a high degree of accuracy and efficiency. 

The modified equivalent current 
approximation (MECA) method [3, 4] has 
extended PO to lossy materials with a complex 
effective permittivity by calculating the equivalent 
electric and magnetic currents based on the 
oblique incidence of a plane wave on the interface, 
together with a field decomposition into TE and 
TM components. Unlike the method of stationary 
phase, the surface is discretized into flat triangular 
facets where the current distribution has constant 
amplitude and linear phase variation. As a 
consequence, the radiation integral can be solved 
analytically and so problems which are prohibitive 
for full-wave simulation, especially at very high 
frequencies, are successfully modelled by MECA. 

On the other hand, we have witnessed the 
emergence and sustained growth and improvement 
of high-speed and high-capacity personal 
computers during the last years. New 
programming paradigms can be used in order to 
improve the performances of the computational 
techniques (MPI, OpenMP). Two recent papers [5, 
6] have analyzed parallel implementations of 
electromagnetic modeling codes which have been 
tested on several high-performance computer 
systems. To reduce the total runtime of MECA, we 
have also developed a parallel version of the code. 
We have selected an OpenMP paradigm because it 
can be applied in shared memory machines. In 
addition, we have implemented memory-
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hierarchy-based optimization techniques [10, 11]  
in our code. 

In this paper, we demonstrate the usefulness of 
employing all these computational techniques to 
take advantage of the new computational resources 
available in personal computers. The main content 
of this paper is divided as follows. Section II gives 
an overview of the MECA method and briefly 
explains our parallel algorithm. In Section III, the 
proposed techniques for improving the use of the 
memory hierarchy are addressed. Afterwards, 
performance results obtained through simulations 
are presented in Section IV. 
 

II. PARALLEL IMPLEMENTATION 
OF MECA 

 
A. The MECA method 

In the MECA method, the equivalent magnetic 
and electric current densities at the barycenter of 
each facet are calculated according to the 
following two equations respectively: 
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where 1η  is the impedance of the medium of 
incidence, and  ( )TE TMR R  is the TE (TM) 
reflection coefficient. For the expressions of TER  
and TMR , see [4, 12]. As shown in Fig. 1, 

ˆi
TEE=i

TE TEE e  and ˆi
TME=i

TM TME e  are the TE and 
TM components of the incident electric field at the 
barycenter of surface iS , ˆ ip  is a unit vector 
pointing in the propagation direction of the 
incident wave, iθ  is the angle of incidence, and ˆ in  
is the outward unit normal vector to the triangular 
patch iS . The first medium is characterized by its 
constitutive parameters: permittivity 1ε , 
permeability 1μ , and conductivity 1σ . Similarly, 

the second medium is characterized by 
2 2 2( ,  ,  )ε μ σ . 
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Fig. 1. Oblique wave incidence on a triangular 
facet Si. 

 
After obtaining i0M  and i0J , an analytical 

solution for the radiation integral at the 
observation point kr , located in the far field of 
each triangular patch, can be derived. The 
scattered electric field s

kE  at kr  due to the 
contribution of all the facets i of a given mesh 
geometry can be stated as [13]: 
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where λ  is the wavelength, 1k  is the wave number 
in the medium of incidence, and ˆikr=ik ikr r  is the 
position vector from the barycenter ir  of the i-th 
facet to the observation point kr . Figure 2 
summarizes the notation for the position vectors 
involved in the scattering calculations throughout 
this paper. 
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iS

′′
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Fig. 2. Facet iS , observation point kr and the 
corresponding position vectors.   ´́ir  is a variable 
vector from barycenter ir  to any point on iS . 
 
    Assuming that the currents have constant 
amplitude and linear phase variation depending on 
the direction of propagation ˆ ip  of the incident 
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wave, the vector values a
ikE  and a

ikH  in Eq. (3) 
can be calculated as [4]: 
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where i0M  and i0J  are the current densities in 
Eqs. (1) and (2), and ˆ( )iI ikr  is an integral given 
by: 
                       1 ˆ ˆ( )ˆ( ) .
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´́ir  denotes a vector from the barycenter ir  of the 

i-th facet to the source points on the triangular 
surface iS  (see Fig. 2). In the particular case that 
the observation point kr  is in the absolute far field 
of the whole structure, then ˆ ˆ≈ik kr r  and ik kr r≈  for 
all the values of i, resulting: 
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The explained current distributions allow 

modeling with facets larger than those employed 
in other approaches. This fact implies a 
computational cost decrease in terms of both time 
and memory. 

The integral in Eq. (6) always has an 
analytical solution [14]. The method for 
analytically solving this integral is summarized in 
Appendix I. 
 
B. Parallel algorithm 

In our parallel implementation of the MECA 
method, each thread computes the scattered fields 

s
kE  in a set of observation points kr , i.e., 

calculates all the summation terms in (3) for a 
range of values of k. A thread is a piece of 
computational work that runs independently. A 
program is parallel if more than one thread is 
executed concurrently during a time interval. We 
have selected the implementation strategy 
described above, instead of using each thread to 
compute, for all the observation points, the 
scattered fields due to a set of facets. As can be 

seen in Fig. 3, the chosen approach ensures that 
the threads do not compete for writing in the 
memory locations which must contain the values 
of s

kE  at the end of the parallel program. If each 
thread were utilized to calculate the contribution 
of a set of triangular patches, the runtime would be 
increased because some threads would have to 
wait to write their partial calculations of s

kE  (see 
Fig. 3b). These delays could be avoided using 
private variables for each OpenMP thread in order 
to store the partial results and, once all the threads 
have finished executing, employ these partial sums 
to compute the total values. Nevertheless, this 
solution can drastically increase the memory 
usage. 
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Fig. 3. Different strategies for implementing the 
parallelization of MECA. 

 
From now on we will use the term “task” to 

refer to an observation point. When allocating 
tasks to the threads, first we assign 
floor(nr/nth) tasks to each thread, where nr 
denotes the total number of tasks and nth 
represents the number of threads. Each of the 
remaining nr-nth*floor(nr/nth) tasks is 
allocated to a single thread. As a consequence, in 
general, some threads compute 
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M=floor(nr/nth) tasks, whereas others 
compute M=floor(nr/nth)+1 tasks. 

In our parallel version of the MECA method, 
each thread runs two main nested for loops. The 
outer loop goes through each observation point 
(index k in (3)), while the inner one goes through 
each facet (index i in (3)). 

We have chosen the OpenMP paradigm 
because it provides a portable application 
programming interface (API) for 
high-performance parallel programs on 
shared-memory platforms. In general, OpenMP 
has better performance on symmetric 
multiprocessing (SMP) systems than MPI [15]. An 
SMP system involves a hardware architecture 
where two or more identical processors are 
connected to a single shared main memory. 

 
III. MEMORY-HIERARCHY-BASED 

OPTIMIZATION 
 
A. Loop tiling 

Different techniques can be employed to 
improve the use of the memory hierarchy. One of 
these techniques is loop tiling, whose aim is to 
increase the reutilization of both instructions and 
data stored in the cache memory. An improvement 
in cache data reuse reduces time spent on 
transferring data from the main memory to the 
cache and vice versa. Figure 4 and the pieces of C 
code in Table 1 exemplify loop tiling. The 
implementation of this technique is simple, and it 
requires adding a new for loop, external to the two 
original loops, as seen in Table 1. 

Without loop tiling, all the corresponding 
inner iterations are executed at each outer 
iteration. On the contrary, if loop tiling is applied, 
only a number block_size of original inner 
iterations are executed per outer loop iteration, as 
Fig. 4 shows. Once the outer loop iterations are 
completed, they are executed again for the next 
blocks of consecutive inner iterations. In our 
particular case, the blocks of block_size inner 
iterations of a complete run of the outer loop 
correspond to the same facets. As a consequence, 
loop tiling produces reutilization of instructions 
and loaded cache data shared by blocks of inner 
iterations, thus reducing the amount of data 
moving between the cache and the main memory. 

The value of the integer parameter 
block_size which minimizes the execution 
time must be empirically determined for a 
particular program and computer. If 
block_size is too large, each iteration of the 
outer loop could not fit on the cache, preventing 
total data reutilization and forcing additional cache 
loads. On the other hand, if block_size is too 
small, there is a certain amount of space not used 
in the cache for data reutilization, and this fact 
leads the cache memory to be unnecessarily 
loaded and unloaded. In order to obtain the 
optimal value, a set of experimental runs should be 
executed with a reduced amount of facets. Figure 
5 presents the results of our tests for determining 
the optimal value of block_size when the 
geometry has 2×105 facets in the experimental 
context described in Section IV. 
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Fig. 5. Runtime vs. block_size with 2×105 
facets. The values of the rest of the parameters can 
be found in Section IV. 
 
 
B. Array fusion 

Another memory hierarchy based optimization 
technique is array fusion, which consists of 
defining a single array of structs instead of 
several same-size arrays in the code. In the 
parallelization of MECA, we regrouped all the 
arrays which store information relative to the 
facets: magnetic/electric currents, barycenter 
points, etc. Let us consider that data is copied from 
main memory to cache, and back, in blocks of 
contiguous data. The elements of a struct are 
arranged in the memory in the same order as they 
are defined; hence, array fusion may lower the 
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total data flow from and to the cache. In our case, 
this technique reduces the execution time because 
the currents at barycenter i and the coordinates of 
barycenter i are used together to compute Eqs. (4), 
(5), (7), and (8). Figure 6 and the two pieces of 
data declaration code in C which appear in Table 2 
illustrate array fusion. 

Without array fusion, the values of the 
magnetic and electric currents at a particular 
barycenter and the vector with the coordinates of 
that barycenter are never stored in contiguous 
order in the main memory. Therefore, in this case, 
at least three accesses to main memory could be 
necessary to move the needed facet data to the 
cache in order to compute each term of the 
summation in Eq. (3). On the contrary, only one 
access could suffice if array fusion is used. 

In our MECA parallel implementation, the 
array which contains the observation points cannot 
be grouped together with the information relative 
to the facets in the same array of structs. The 
obvious reason is that the number of observation 
points is generally different from the amount of 

facets. Moreover, for a given observation point, 
Eq. (3) must be computed using the information of 
all the facets, i.e., with array fusion, it would be 
necessary to define additional fields in each 
struct for storing the coordinates of all the 
required observation points. Clearly, this solution 
would lead to a much higher memory usage, and, 
what is more important, the struct so defined 
could not fit on the cache. 

 
Table 1: Loop tiling implementation 

Without loop tiling: 
for (ind1=0; ind1<M; ind1++) 
{ 
/* THIS OUTER LOOP GOES THROUGH */ 
/* EACH OBSERVATION POINT       */ 
   for (ind2=0; ind2<N; ind2++) { 
   /* THIS INNER LOOP GOES THROUGH EACH FACET */...}} 

With loop tiling: 
for(ind_tiling=0;ind_tiling<N;ind_tiling+=block_size){ 
   for (ind1=0; ind1<M; ind1++) { 
   /* THIS OUTER LOOP GOES THROUGH */ 
   /* EACH OBSERVATION POINT       */    
      for (ind2=ind_tiling; 
           ind2<MIN(ind_tiling+block_size, N); 
           ind2++){ 
           /* THIS INNER LOOP GOES */ 
           /* THROUGH EACH FACET   */...}}} 

Fig. 4. Execution order of the loop iterations. With loop tiling, there exists an increase in the 
reutilization of instructions and loaded cache data shared by blocks of inner iterations. 

 
Outer loop: iteration #1 

Inner loop: 
iteration #1 

Inner loop: 
iteration #N 

... ... Outer loop: iteration #M 
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number of inner iterations per outer iteration: N number of inner iterations per outer iteration: N 

a) Without loop tiling  
 

 

Outer loop: iteration #1 

Inner loop: 
iteration #1 

Inner loop: 
iteration #block_size 

... 

number of inner iterations per outer iteration: block_size 

...

Outer loop: iteration #1 

Inner loop: 
iteration #2*block_size

... ...
Inner loop: 

iteration #block_size+1

b) With loop tiling 

number of inner iterations per outer iteration: block_size 

Outer loop: iteration #M 

Inner loop: 
iteration #1 

Inner loop: 
iteration #block_size 

...

Outer loop: iteration #M 

Inner loop: 
iteration #2*block_size 

Inner loop: 
iteration #block_size+1

... ... 

number of inner iterations per outer iteration: block_size 

number of inner iterations per outer iteration: block_size 

845GÓMEZ-SOUSA, ET. AL: IMPROVING MEMORY HIERARCHY IN MECA METHOD



 

 

Table 2: Array fusion implementation 

Without array fusion: 
double J_Real[3*N], J_Imag[3*N], M_Real[3*N], M_Imag[3*N],    
       Barycenter[3*N]; 
 
// For instance, { J_Real[3*i+0], J_Real[3*i+1], J_Real[3*i+2] } are the 
// 3 real Cartesian components of the electric current density at 
// barycenter i>=0. 
// Single-dimensional arrays are used here to ensure that the 3  
// components of each vector are contiguous in memory independently of 
// the programming language, the compiler and the platform. 

With array fusion:
struct reg{ 
    double J_Real[3], J_Imag[3], M_Real[3], M_Imag[3], Barycenter[3]; 
} 
struct reg v[N]; 
 
// With array fusion, for each i the following 3-element arrays are 
// contiguous in memory: 
// v[i].J_Real, v[i].J_Imag, v[i].M_Real, v[i].M_Imag and  
// v[i].Barycenter. 

Fig. 6. Storage order in the main memory. With array fusion, all the data relative 
to each facet is stored contiguously. 
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C. False-sharing reduction 
The cache is subdivided into cache lines which 

represent the minimum amount of data 
transferable between cache and main memory. 
These cache lines are organized into C sets of K 
lines, as explained in Fig. 7. The content of main 
memory line X can only be stored in cache set X 
mod C. 
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cache memory 
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memory 
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memory 
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to set 0 to set 1 to set 2 to set 3 to set 0 to set 1 to set 2 to set 3

main memory  
Fig. 7. Example: cache with C=4 sets 
of K=2 lines each. 

 
 
When running a parallel application, false 

sharing occurs when two threads access different 
data elements in the same cache line for reads and 
writes. This situation is represented in Fig. 8. This 
particular problem could seriously degrade the 
performance of an application because some 
threads might have to wait until the preceding 
writing operations in the queue have completed. 
 
 
 

 
 

 
  

cache memory 
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to set 0 to set 1 to set 2 to set 3 to set 0 to set 1 to set 2 to set 3 
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B 

Fig. 8. Example: false sharing occurs when 
different threads modify variables A and B which 
reside in the same cache line.  

 

 To reduce false sharing, we use the 
firstprivate clause on the OpenMP task 
pragma. This clause declares one or more input 
variables to be private to a thread, and initializes 
each of these variables with the value that the 
corresponding original variable has when the task 
pragma is encountered. As we have seen, the 
utilization of firstprivate in our parallel 
program increases the performance. 

 
IV. RESULTS 

The algorithm for calculating the scattered field 
in Eq. (3) was implemented in C using the 
OpenMP library. We ran our parallel algorithm on 
a server with two Quad-Core Intel® Xeon® 
processors with 6 MB of L2 cache per processor, 
yielding a total of eight cores, each core running at 
2.66 GHz. The parameter block_size was set 
to the value 512 (the optimal value, presented in 
Fig. 4), the number of observation points was 722, 
the maximum number of facets was 5×106, and we 
used 8 threads. A square plate geometry was 
chosen for our performance tests. Figures 9 and 10 
show the total runtime as a function of the number 
of facets for our parallel implementation with and 
without all the optimization techniques described 
in Section III. For comparison, these figures, also, 
include the total runtime for a MATLAB® single-
thread version of the MECA method, i.e., a 
sequential program version in MATLAB®, 
without memory-hierarchy-based optimization 
techniques, executed on the same computer. 
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Fig. 9. Runtime vs. number of facets for near-field 
calculations. 
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Fig. 10. Runtime vs. number of facets for far-field 
calculations. 
 
    Under the experimental conditions explained 
above, and employing the firstprivate 
clause, Figs. 11 and 12 show the effect on the 
runtime of the separate use of array fusion and 
loop tiling. 
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Fig. 11. Runtime vs. number of facets for 
near-field calculations with the separate use of 
array fusion and loop tiling. 

 
The parallel speedup values under the 
experimental conditions described above were 
obtained varying the number of threads, up to the 
number of cores. In our particular case, it was 
noted that having more threads than cores 
degrades performance compared to the optimal 
solution of using as many threads as cores. The 
experimental speedup is defined by the following 

formula: (1 thread)(  threads)=
(  threads)

runtimespeedup n
runtime n

. 
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Fig. 12. Runtime vs. number of facets for far-field 
calculations with the separate use of array fusion 
and loop tiling. 
 
    The influence of the firstprivate clause is 
represented in Fig. 13. 
 

0 1 2 3 4 5

x 10
6

0

20

40

60

80

100

120

140

T
im

e 
(s

)

Number of facets

8 threads with array fusion and loop tiling,
 using the FIRSTPRIVATE clause.
8 threads with array fusion and loop tiling,
 using the SHARED (default) clause.

 
Fig. 13. Runtime vs. number of facets for far-field 
calculations, with and without the 
firstprivate clause. 

 
 

 

The speedup so calculated, up to the number of 
real cores, allows inferring the scalability of our 
program, namely the optimal performance 
behavior of the program as a function of the 
number of cores. 

If n threads are used in an ideal scenario with n 
cores, the runtime is reduced by a factor of n when 
compared to the runtime of one thread. The reason 
is that the total computational load is distributed 
evenly amongst the threads, and each thread is 
executed by a core. Then the ideal speedup is 
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simply (  threads)=speedup n n . In a real scenario, the 
speedup achieved is lower due to constraints such 
as the effect of accessing a shared memory or the 
communication times between threads. In our 
parallel algorithm, communication between the 
threads is not performed, but multiple threads 
simultaneously access the same shared memory. 

The scalability obtained through simulations is 
illustrated in Fig. 14, showing the experimental 
speedup. Looking at this figure, the excellent 
scalability of our parallel implementation is clear. 
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Fig. 14. The experimental speedup as a function of 
the number of threads (each thread assigned to a 
real core) for far-field calculations and a scattering 
problem with 5×106 facets. 

 
Finally, Figs. 15 and 16 show a comparison 

between the far-field results of MECA and MoM. 
The geometry consists of a square PEC plate 
whose length is 3 cm, located in the XY plane. 
The incident field is a plane wave polarized along 
the direction θ̂ , with amplitude 1 V/m,  
f = 94 GHz, and normal incidence on the interface. 

 
V. CONCLUSION 

This paper presents a parallel version of a 
modified PO method, known as the modified 
equivalent current approximation (MECA) 
method, valid for both PEC and dielectric objects. 
Our experimental results show that the 
computational performance of this parallel 
implementation is increased by applying 
techniques to improve the use of the memory 
hierarchy. These optimization techniques are 
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Fig. 15. Comparison between MoM and MECA 
solutions along the observation cut 0ºφ =  for a 
square PEC scatterer of side length 3 cm.  
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Fig. 16. Comparison between MoM and MECA 
solutions along the observation cut 90ºφ =  for a 
square PEC scatterer of side length 3 cm. 

 
 
simple and easy to understand, and they could be 
very effective in improving the programmed 
algorithm performance (either sequential or 
parallel programs) in many other methods for 
calculating scattered fields. 
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APPENDIX I  
In this appendix, we explain how to solve the 

integral in Eq. (6) using the procedure detailed in 
[14]. 

Let us consider a triangular flat patch as seen in 
Fig. 17. The triangle i is defined by three points 

1P , 2P , 3P , and ir  is a reference point placed at 
the barycenter ( ( ) / 3= + +i 1 2 3r P P P ). We define 

mnv  as the vector = −mn n mv P P . The normal 
vector n̂  of the triangle i is defined such that 

ˆ2 iA× =12 13v v n , as seen in Fig. 17, where iA  is 
the area of this triangle. 

 

2P

13v

3P
ir

1P

12v

 

 
Fig. 17. Triangular patch with barycenter ir  and 
vertices 1P , 2P  and 3P . 
 

A coordinate system is used with scalar 
variables ( , )u v  such that any point ´́ir  on the 
triangle surface can be described as: 
 

                    .u v′′ = − + ⋅ + ⋅i 1 i 12 13r P r v v             (9) 
 

The integral (6) is then given by: 
 

       
1 1 ( )3
0 0

ˆ( ) 2 ,
j u v u j u v

i i u v
I A e e dvdu

α β
α β

+− = = − +

= =
= ∫ ∫r   (10) 

 
whose solution is 
 

     3ˆ( ) 2 ,
( )

j jj

i i
e eI A e

α β β αα β β α
α β α β

+− ⎡ ⎤− + −= ⎢ ⎥−⎣ ⎦
r  (11) 

 
where 
 
                              1 ˆ ˆ( ),kα = −12 iv r p                 (12) 
                              1 ˆ ˆ( ).kβ = −13 iv r p                 (13) 
 

The expression (11) has the following singular 
values: 

3
2

1ˆ0, 0 ( ) 2 ,
jj

i i
j eI A e

β ββα β
β

− + −= ≠ ⇒ =r    (14) 

3
2

1ˆ0, 0 ( ) 2 ,
jj

i i
j eI A e

α ααα β
α

− + −≠ = ⇒ =r     (15) 

3
2

1ˆ0 ( ) 2 ,
jj

i i
j eI A e

α ααα β
α

−− −= ≠ ⇒ =r        (16) 

ˆ0 ( ) .i iI Aα β= = ⇒ =r                                  (17) 
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