
Strategies for Improving the Use of the Memory Hierarchy in an
Implementation of the Modified Equivalent Current Approximation

(MECA) Method

Hipólito Gómez-Sousa1, José Á. Martínez-Lorenzo1, Oscar Rubiños-López1,
Javier G. Meana2, María Graña-Varela1, Borja Gonzalez-Valdes1,

and Marcos Arias-Acuña1

1 Department of Signal Theory and Communications
University of Vigo, ETSI de Telecomunicación, Campus Universitario, E-36310 Vigo, Spain

{hgomez, oscar}@com.uvigo.es

2 Department of Electrical Engineering
University of Oviedo, Edificio Polivalente de Viesques, Campus Universitario, E-33203 Gijón, Spain

Abstract ─ In this paper, we investigate different
techniques for improving the cache memory use
when running a parallel implementation of the
modified equivalent current approximation
(MECA) method. The MECA method allows the
analysis of dielectric and lossy geometries, and
reduces to the well-studied physical optics (PO)
formulation in case of PEC scatterers. We discuss
several memory-hierarchy-based optimization
techniques and present how to implement them in
C. We show through simulations that these
optimization strategies are effective for reducing
the total execution time when calculating the
scattered fields with a parallel implementation of
the MECA method.

Index Terms ─ Memory-hierarchy-based
optimization, parallel programming, physical
optics (PO).

I. INTRODUCTION
Physical optics (PO) is a well-known

asymptotic high frequency computational
technique that is widely used in computing the
electromagnetic scattering from electrically large
and complex structures [1, 2]. In contrast to full
wave methods, like the method of moments
(MoM), PO does not need a huge amount of
computational resources to solve these problems
with a high degree of accuracy and efficiency.

The modified equivalent current
approximation (MECA) method [3, 4] has
extended PO to lossy materials with a complex
effective permittivity by calculating the equivalent
electric and magnetic currents based on the
oblique incidence of a plane wave on the interface,
together with a field decomposition into TE and
TM components. Unlike the method of stationary
phase, the surface is discretized into flat triangular
facets where the current distribution has constant
amplitude and linear phase variation. As a
consequence, the radiation integral can be solved
analytically and so problems which are prohibitive
for full-wave simulation, especially at very high
frequencies, are successfully modelled by MECA.

On the other hand, we have witnessed the
emergence and sustained growth and improvement
of high-speed and high-capacity personal
computers during the last years. New
programming paradigms can be used in order to
improve the performances of the computational
techniques (MPI, OpenMP). Two recent papers [5,
6] have analyzed parallel implementations of
electromagnetic modeling codes which have been
tested on several high-performance computer
systems. To reduce the total runtime of MECA, we
have also developed a parallel version of the code.
We have selected an OpenMP paradigm because it
can be applied in shared memory machines. In
addition, we have implemented memory-

1054-4887 © 2010 ACES

841ACES JOURNAL, VOL. 25, NO. 10, OCTOBER 2010

hierarchy-based optimization techniques [10, 11]
in our code.

In this paper, we demonstrate the usefulness of
employing all these computational techniques to
take advantage of the new computational resources
available in personal computers. The main content
of this paper is divided as follows. Section II gives
an overview of the MECA method and briefly
explains our parallel algorithm. In Section III, the
proposed techniques for improving the use of the
memory hierarchy are addressed. Afterwards,
performance results obtained through simulations
are presented in Section IV.

II. PARALLEL IMPLEMENTATION
OF MECA

A. The MECA method

In the MECA method, the equivalent magnetic
and electric current densities at the barycenter of
each facet are calculated according to the
following two equations respectively:

()()

()
ˆ ˆ1

ˆcos() 1 ,
i

i
TE TE

i
TM i TM S

E R

E Rθ

= + × +

+ +
i0 TE i

TE

M e n

e
 (1)

()

()()
1

1

ˆcos() 1

ˆ ˆ1 ,
i

i
TE

i TE

i
TM

TM S

E R

E R

θ
η

η

= − +

+ − ×

i0 TE

i TE

J e

n e
 (2)

where 1η is the impedance of the medium of
incidence, and ()TE TMR R is the TE (TM)
reflection coefficient. For the expressions of TER
and TMR , see [4, 12]. As shown in Fig. 1,

ˆi
TEE=i

TE TEE e and ˆi
TME=i

TM TME e are the TE and
TM components of the incident electric field at the
barycenter of surface iS , ˆ ip is a unit vector
pointing in the propagation direction of the
incident wave, iθ is the angle of incidence, and ˆ in
is the outward unit normal vector to the triangular
patch iS . The first medium is characterized by its
constitutive parameters: permittivity 1ε ,
permeability 1μ , and conductivity 1σ . Similarly,

the second medium is characterized by
2 2 2(, ,)ε μ σ .

iS

ˆ iniθ

i
TME

i
TEE

ˆTMe

ˆTEe
ˆ ip

ˆ ip
1 1 1, , ε μ σ

2 2 2, , ε μ σ

Fig. 1. Oblique wave incidence on a triangular
facet Si.

After obtaining i0M and i0J , an analytical

solution for the radiation integral at the
observation point kr , located in the far field of
each triangular patch, can be derived. The
scattered electric field s

kE at kr due to the
contribution of all the facets i of a given mesh
geometry can be stated as [13]:

1

1 ˆ ,
2

ikjk r

i ik

j e
r

η
λ

−

⎡ ⎤= − ×⎣ ⎦∑s a a
k ik ik ikE E H r (3)

where λ is the wavelength, 1k is the wave number
in the medium of incidence, and ˆikr=ik ikr r is the
position vector from the barycenter ir of the i-th
facet to the observation point kr . Figure 2
summarizes the notation for the position vectors
involved in the scattering calculations throughout
this paper.

ir

iS

′′
ir

kr
ikr

Fig. 2. Facet iS , observation point kr and the
corresponding position vectors. ´́ir is a variable
vector from barycenter ir to any point on iS .

 Assuming that the currents have constant
amplitude and linear phase variation depending on
the direction of propagation ˆ ip of the incident

842 ACES JOURNAL, VOL. 25, NO. 10, OCTOBER 2010

wave, the vector values a
ikE and a

ikH in Eq. (3)
can be calculated as [4]:

 ˆ ˆ() (),iI= ×a

ik ik i0 ikE r M r (4)

 ˆ ˆ() (),iI= ×a

ik ik i0 ikH r J r (5)

where i0M and i0J are the current densities in
Eqs. (1) and (2), and ˆ()iI ikr is an integral given
by:
 1 ˆ ˆ()ˆ() .

i

jk
i iS

I e ds′′−= ∫ i ir p rr i (6)

´́ir denotes a vector from the barycenter ir of the

i-th facet to the source points on the triangular
surface iS (see Fig. 2). In the particular case that
the observation point kr is in the absolute far field
of the whole structure, then ˆ ˆ≈ik kr r and ik kr r≈ for
all the values of i, resulting:

 1ˆ ˆ ˆ() (),jk

ie I⋅= ×k ir ra
ik k i0 kE r M r (7)

 1ˆ ˆ ˆ() ().jk

ie I⋅= ×k ir ra
ik k i0 kH r J r (8)

The explained current distributions allow

modeling with facets larger than those employed
in other approaches. This fact implies a
computational cost decrease in terms of both time
and memory.

The integral in Eq. (6) always has an
analytical solution [14]. The method for
analytically solving this integral is summarized in
Appendix I.

B. Parallel algorithm

In our parallel implementation of the MECA
method, each thread computes the scattered fields

s
kE in a set of observation points kr , i.e.,

calculates all the summation terms in (3) for a
range of values of k. A thread is a piece of
computational work that runs independently. A
program is parallel if more than one thread is
executed concurrently during a time interval. We
have selected the implementation strategy
described above, instead of using each thread to
compute, for all the observation points, the
scattered fields due to a set of facets. As can be

seen in Fig. 3, the chosen approach ensures that
the threads do not compete for writing in the
memory locations which must contain the values
of s

kE at the end of the parallel program. If each
thread were utilized to calculate the contribution
of a set of triangular patches, the runtime would be
increased because some threads would have to
wait to write their partial calculations of s

kE (see
Fig. 3b). These delays could be avoided using
private variables for each OpenMP thread in order
to store the partial results and, once all the threads
have finished executing, employ these partial sums
to compute the total values. Nevertheless, this
solution can drastically increase the memory
usage.

1

(...)
2 i

j
λ

=

= ∑

sE

(...)
2

M

i

j
λ

=

= ∑

sE 1

(...)
2

M

i

j
λ

+ =

= ∑

sE 2

(...)
2

M

i

j
λ

=

= ∑

sE

2M
sE 1M +

sE M
sE 1

sE

thread 1 thread 2

memory locations:

a) Each thread computes for a set of observation points
(our implemented approach)

1
1

(...)
2

M

k
i

j
λ =

=

+ ∑

m
sE 1

sE

memory locations:

b) Each thread computes for a set of facets

1

(...)
2

M

k m
i

j
λ =

=

+ ∑ thread 1

2

1
1

(...)
2

M

k
i M

j
λ =

= +

+ ∑
2

1

(...)
2

M

k m
i M

j
λ =

= +

+ ∑ thread 2

all the threads write to
the same memory space

+ +

Fig. 3. Different strategies for implementing the
parallelization of MECA.

From now on we will use the term “task” to

refer to an observation point. When allocating
tasks to the threads, first we assign
floor(nr/nth) tasks to each thread, where nr
denotes the total number of tasks and nth
represents the number of threads. Each of the
remaining nr-nth*floor(nr/nth) tasks is
allocated to a single thread. As a consequence, in
general, some threads compute

843GÓMEZ-SOUSA, ET. AL: IMPROVING MEMORY HIERARCHY IN MECA METHOD

M=floor(nr/nth) tasks, whereas others
compute M=floor(nr/nth)+1 tasks.

In our parallel version of the MECA method,
each thread runs two main nested for loops. The
outer loop goes through each observation point
(index k in (3)), while the inner one goes through
each facet (index i in (3)).

We have chosen the OpenMP paradigm
because it provides a portable application
programming interface (API) for
high-performance parallel programs on
shared-memory platforms. In general, OpenMP
has better performance on symmetric
multiprocessing (SMP) systems than MPI [15]. An
SMP system involves a hardware architecture
where two or more identical processors are
connected to a single shared main memory.

III. MEMORY-HIERARCHY-BASED

OPTIMIZATION

A. Loop tiling

Different techniques can be employed to
improve the use of the memory hierarchy. One of
these techniques is loop tiling, whose aim is to
increase the reutilization of both instructions and
data stored in the cache memory. An improvement
in cache data reuse reduces time spent on
transferring data from the main memory to the
cache and vice versa. Figure 4 and the pieces of C
code in Table 1 exemplify loop tiling. The
implementation of this technique is simple, and it
requires adding a new for loop, external to the two
original loops, as seen in Table 1.

Without loop tiling, all the corresponding
inner iterations are executed at each outer
iteration. On the contrary, if loop tiling is applied,
only a number block_size of original inner
iterations are executed per outer loop iteration, as
Fig. 4 shows. Once the outer loop iterations are
completed, they are executed again for the next
blocks of consecutive inner iterations. In our
particular case, the blocks of block_size inner
iterations of a complete run of the outer loop
correspond to the same facets. As a consequence,
loop tiling produces reutilization of instructions
and loaded cache data shared by blocks of inner
iterations, thus reducing the amount of data
moving between the cache and the main memory.

The value of the integer parameter
block_size which minimizes the execution
time must be empirically determined for a
particular program and computer. If
block_size is too large, each iteration of the
outer loop could not fit on the cache, preventing
total data reutilization and forcing additional cache
loads. On the other hand, if block_size is too
small, there is a certain amount of space not used
in the cache for data reutilization, and this fact
leads the cache memory to be unnecessarily
loaded and unloaded. In order to obtain the
optimal value, a set of experimental runs should be
executed with a reduced amount of facets. Figure
5 presents the results of our tests for determining
the optimal value of block_size when the
geometry has 2×105 facets in the experimental
context described in Section IV.

100 200 300 400 500 600 700 800 900 1000

10
0.76

10
0.77

R
un

tim
e

(s
)

block_size
Fig. 5. Runtime vs. block_size with 2×105
facets. The values of the rest of the parameters can
be found in Section IV.

B. Array fusion

Another memory hierarchy based optimization
technique is array fusion, which consists of
defining a single array of structs instead of
several same-size arrays in the code. In the
parallelization of MECA, we regrouped all the
arrays which store information relative to the
facets: magnetic/electric currents, barycenter
points, etc. Let us consider that data is copied from
main memory to cache, and back, in blocks of
contiguous data. The elements of a struct are
arranged in the memory in the same order as they
are defined; hence, array fusion may lower the

844 ACES JOURNAL, VOL. 25, NO. 10, OCTOBER 2010

total data flow from and to the cache. In our case,
this technique reduces the execution time because
the currents at barycenter i and the coordinates of
barycenter i are used together to compute Eqs. (4),
(5), (7), and (8). Figure 6 and the two pieces of
data declaration code in C which appear in Table 2
illustrate array fusion.

Without array fusion, the values of the
magnetic and electric currents at a particular
barycenter and the vector with the coordinates of
that barycenter are never stored in contiguous
order in the main memory. Therefore, in this case,
at least three accesses to main memory could be
necessary to move the needed facet data to the
cache in order to compute each term of the
summation in Eq. (3). On the contrary, only one
access could suffice if array fusion is used.

In our MECA parallel implementation, the
array which contains the observation points cannot
be grouped together with the information relative
to the facets in the same array of structs. The
obvious reason is that the number of observation
points is generally different from the amount of

facets. Moreover, for a given observation point,
Eq. (3) must be computed using the information of
all the facets, i.e., with array fusion, it would be
necessary to define additional fields in each
struct for storing the coordinates of all the
required observation points. Clearly, this solution
would lead to a much higher memory usage, and,
what is more important, the struct so defined
could not fit on the cache.

Table 1: Loop tiling implementation

Without loop tiling:
for (ind1=0; ind1<M; ind1++)
{
/* THIS OUTER LOOP GOES THROUGH */
/* EACH OBSERVATION POINT */
 for (ind2=0; ind2<N; ind2++) {
 /* THIS INNER LOOP GOES THROUGH EACH FACET */...}}

With loop tiling:
for(ind_tiling=0;ind_tiling<N;ind_tiling+=block_size){
 for (ind1=0; ind1<M; ind1++) {
 /* THIS OUTER LOOP GOES THROUGH */
 /* EACH OBSERVATION POINT */
 for (ind2=ind_tiling;
 ind2<MIN(ind_tiling+block_size, N);
 ind2++){
 /* THIS INNER LOOP GOES */
 /* THROUGH EACH FACET */...}}}

Fig. 4. Execution order of the loop iterations. With loop tiling, there exists an increase in the
reutilization of instructions and loaded cache data shared by blocks of inner iterations.

Outer loop: iteration #1

Inner loop:
iteration #1

Inner loop:
iteration #N

... ... Outer loop: iteration #M

Inner loop:
iteration #1

Inner loop:
iteration #N

...

number of inner iterations per outer iteration: N number of inner iterations per outer iteration: N

a) Without loop tiling

Outer loop: iteration #1

Inner loop:
iteration #1

Inner loop:
iteration #block_size

...

number of inner iterations per outer iteration: block_size

...

Outer loop: iteration #1

Inner loop:
iteration #2*block_size

... ...
Inner loop:

iteration #block_size+1

b) With loop tiling

number of inner iterations per outer iteration: block_size

Outer loop: iteration #M

Inner loop:
iteration #1

Inner loop:
iteration #block_size

...

Outer loop: iteration #M

Inner loop:
iteration #2*block_size

Inner loop:
iteration #block_size+1

... ...

number of inner iterations per outer iteration: block_size

number of inner iterations per outer iteration: block_size

845GÓMEZ-SOUSA, ET. AL: IMPROVING MEMORY HIERARCHY IN MECA METHOD

Table 2: Array fusion implementation

Without array fusion:
double J_Real[3*N], J_Imag[3*N], M_Real[3*N], M_Imag[3*N],
 Barycenter[3*N];

// For instance, { J_Real[3*i+0], J_Real[3*i+1], J_Real[3*i+2] } are the
// 3 real Cartesian components of the electric current density at
// barycenter i>=0.
// Single-dimensional arrays are used here to ensure that the 3
// components of each vector are contiguous in memory independently of
// the programming language, the compiler and the platform.

With array fusion:
struct reg{
 double J_Real[3], J_Imag[3], M_Real[3], M_Imag[3], Barycenter[3];
}
struct reg v[N];

// With array fusion, for each i the following 3-element arrays are
// contiguous in memory:
// v[i].J_Real, v[i].J_Imag, v[i].M_Real, v[i].M_Imag and
// v[i].Barycenter.

Fig. 6. Storage order in the main memory. With array fusion, all the data relative
to each facet is stored contiguously.

Electric current
at barycenter 1

Electric current
at barycenter 2 ... Electric current

at barycenter N

Magnetic current
at barycenter 1

Magnetic current
at barycenter 2 ... Magnetic current

at barycenter N

Position vector
of barycenter 1

Position vector
of barycenter 2 ... Position vector

of barycenter N

a) Without array fusion (independent arrays)

Electric curr.
at barycenter 1

Magnetic curr.
at barycenter 1

Position vector
of barycenter 1

Electric curr.
at barycenter 2

Magnetic curr.
at barycenter 2

Position vector
of barycenter 2

...

b) With array fusion (one array of structs)

846 ACES JOURNAL, VOL. 25, NO. 10, OCTOBER 2010

C. False-sharing reduction
The cache is subdivided into cache lines which

represent the minimum amount of data
transferable between cache and main memory.
These cache lines are organized into C sets of K
lines, as explained in Fig. 7. The content of main
memory line X can only be stored in cache set X
mod C.

cache
line 0

cache
line 0

cache memory

cache
line 0

cache
line 0

cache
line 1

cache
line 1

cache
line 1

cache
line 1

memory
line 2

memory
line 0

memory
line 1

memory
line 3

set 0 set 1 set 2 set 3

memory
line 6

memory
line 4

memory
line 5

memory
line 7

to set 0 to set 1 to set 2 to set 3 to set 0 to set 1 to set 2 to set 3

main memory
Fig. 7. Example: cache with C=4 sets
of K=2 lines each.

When running a parallel application, false

sharing occurs when two threads access different
data elements in the same cache line for reads and
writes. This situation is represented in Fig. 8. This
particular problem could seriously degrade the
performance of an application because some
threads might have to wait until the preceding
writing operations in the queue have completed.

cache memory

set 0 set 1 set 2 set 3

to set 0 to set 1 to set 2 to set 3 to set 0 to set 1 to set 2 to set 3

main memory

A

B

A

B

Fig. 8. Example: false sharing occurs when
different threads modify variables A and B which
reside in the same cache line.

 To reduce false sharing, we use the
firstprivate clause on the OpenMP task
pragma. This clause declares one or more input
variables to be private to a thread, and initializes
each of these variables with the value that the
corresponding original variable has when the task
pragma is encountered. As we have seen, the
utilization of firstprivate in our parallel
program increases the performance.

IV. RESULTS

The algorithm for calculating the scattered field
in Eq. (3) was implemented in C using the
OpenMP library. We ran our parallel algorithm on
a server with two Quad-Core Intel® Xeon®
processors with 6 MB of L2 cache per processor,
yielding a total of eight cores, each core running at
2.66 GHz. The parameter block_size was set
to the value 512 (the optimal value, presented in
Fig. 4), the number of observation points was 722,
the maximum number of facets was 5×106, and we
used 8 threads. A square plate geometry was
chosen for our performance tests. Figures 9 and 10
show the total runtime as a function of the number
of facets for our parallel implementation with and
without all the optimization techniques described
in Section III. For comparison, these figures, also,
include the total runtime for a MATLAB® single-
thread version of the MECA method, i.e., a
sequential program version in MATLAB®,
without memory-hierarchy-based optimization
techniques, executed on the same computer.

0 1 2 3 4 5

x 10
6

10
0

10
1

10
2

10
3

10
4

T
im

e
(s

)

Number of facets

MATLAB (single thread)
8 threads without optimizations
8 threads with optimizations

Fig. 9. Runtime vs. number of facets for near-field
calculations.

847GÓMEZ-SOUSA, ET. AL: IMPROVING MEMORY HIERARCHY IN MECA METHOD

0 1 2 3 4 5

x 10
6

10
0

10
1

10
2

10
3

10
4

T
im

e
(s

)

Number of facets

MATLAB (single thread)
8 threads without optimizations
8 threads with optimizations

Fig. 10. Runtime vs. number of facets for far-field
calculations.

 Under the experimental conditions explained
above, and employing the firstprivate
clause, Figs. 11 and 12 show the effect on the
runtime of the separate use of array fusion and
loop tiling.

0 1 2 3 4 5

x 10
6

0

50

100

150

200

250

300

T
im

e
(s

)

Number of facets

8 threads without optimizations
8 threads with array fusion
8 threads with loop tiling
8 threads with array fusion and loop tiling

Fig. 11. Runtime vs. number of facets for
near-field calculations with the separate use of
array fusion and loop tiling.

The parallel speedup values under the
experimental conditions described above were
obtained varying the number of threads, up to the
number of cores. In our particular case, it was
noted that having more threads than cores
degrades performance compared to the optimal
solution of using as many threads as cores. The
experimental speedup is defined by the following

formula: (1 thread)(threads)=
(threads)

runtimespeedup n
runtime n

.

0 1 2 3 4 5

x 10
6

0

50

100

150

200

250

T
im

e
(s

)

Number of facets

8 threads without optimizations
8 threads with array fusion
8 threads with loop tiling
8 threads with array fusion and loop tiling

Fig. 12. Runtime vs. number of facets for far-field
calculations with the separate use of array fusion
and loop tiling.

 The influence of the firstprivate clause is
represented in Fig. 13.

0 1 2 3 4 5

x 10
6

0

20

40

60

80

100

120

140

T
im

e
(s

)

Number of facets

8 threads with array fusion and loop tiling,
 using the FIRSTPRIVATE clause.
8 threads with array fusion and loop tiling,
 using the SHARED (default) clause.

Fig. 13. Runtime vs. number of facets for far-field
calculations, with and without the
firstprivate clause.

The speedup so calculated, up to the number of
real cores, allows inferring the scalability of our
program, namely the optimal performance
behavior of the program as a function of the
number of cores.

If n threads are used in an ideal scenario with n
cores, the runtime is reduced by a factor of n when
compared to the runtime of one thread. The reason
is that the total computational load is distributed
evenly amongst the threads, and each thread is
executed by a core. Then the ideal speedup is

848 ACES JOURNAL, VOL. 25, NO. 10, OCTOBER 2010

simply (threads)=speedup n n . In a real scenario, the
speedup achieved is lower due to constraints such
as the effect of accessing a shared memory or the
communication times between threads. In our
parallel algorithm, communication between the
threads is not performed, but multiple threads
simultaneously access the same shared memory.

The scalability obtained through simulations is
illustrated in Fig. 14, showing the experimental
speedup. Looking at this figure, the excellent
scalability of our parallel implementation is clear.

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Number of threads

P
ar

al
le

l s
pe

ed
up

Test results
Ideal results

Fig. 14. The experimental speedup as a function of
the number of threads (each thread assigned to a
real core) for far-field calculations and a scattering
problem with 5×106 facets.

Finally, Figs. 15 and 16 show a comparison

between the far-field results of MECA and MoM.
The geometry consists of a square PEC plate
whose length is 3 cm, located in the XY plane.
The incident field is a plane wave polarized along
the direction θ̂ , with amplitude 1 V/m,
f = 94 GHz, and normal incidence on the interface.

V. CONCLUSION

This paper presents a parallel version of a
modified PO method, known as the modified
equivalent current approximation (MECA)
method, valid for both PEC and dielectric objects.
Our experimental results show that the
computational performance of this parallel
implementation is increased by applying
techniques to improve the use of the memory
hierarchy. These optimization techniques are

−80 −60 −40 −20 0 20 40 60 80
−45

−40

−35

−30

−25

−20

−15

−10

θ (º)

S
ca

tte
re

d
E

le
ct

ric
 F

ie
ld

 w
ith

ou
t e

xp
(−

jk
r)

/r
. (

dB
V

)

Cut φ=0º

MECA
MoM

Fig. 15. Comparison between MoM and MECA
solutions along the observation cut 0ºφ = for a
square PEC scatterer of side length 3 cm.

−80 −60 −40 −20 0 20 40 60 80
−45

−40

−35

−30

−25

−20

−15

−10

θ (º)

S
ca

tte
re

d
E

le
ct

ric
 F

ie
ld

 w
ith

ou
t e

xp
(−

jk
r)

/r
. (

dB
V

)

Cut φ=90º

MECA
MoM

Fig. 16. Comparison between MoM and MECA
solutions along the observation cut 90ºφ = for a
square PEC scatterer of side length 3 cm.

simple and easy to understand, and they could be
very effective in improving the programmed
algorithm performance (either sequential or
parallel programs) in many other methods for
calculating scattered fields.

ACKNOWLEDGMENT
This work was supported by the Spanish

Government Grants CONSOLIDER-INGENIO
2010 CSD2008-00068 and “Ramón y Cajal”
RYC-2009-04180, and by Xunta de Galicia Grant
INCITE08PXIB322219PR.

849GÓMEZ-SOUSA, ET. AL: IMPROVING MEMORY HIERARCHY IN MECA METHOD

APPENDIX I
In this appendix, we explain how to solve the

integral in Eq. (6) using the procedure detailed in
[14].

Let us consider a triangular flat patch as seen in
Fig. 17. The triangle i is defined by three points

1P , 2P , 3P , and ir is a reference point placed at
the barycenter (() / 3= + +i 1 2 3r P P P). We define

mnv as the vector = −mn n mv P P . The normal
vector n̂ of the triangle i is defined such that

ˆ2 iA× =12 13v v n , as seen in Fig. 17, where iA is
the area of this triangle.

2P

13v

3P
ir

1P

12v

Fig. 17. Triangular patch with barycenter ir and
vertices 1P , 2P and 3P .

A coordinate system is used with scalar
variables (,)u v such that any point ´́ir on the
triangle surface can be described as:

 .u v′′ = − + ⋅ + ⋅i 1 i 12 13r P r v v (9)

The integral (6) is then given by:

1 1 ()3
0 0

ˆ() 2 ,
j u v u j u v

i i u v
I A e e dvdu

α β
α β

+− = = − +

= =
= ∫ ∫r (10)

whose solution is

 3ˆ() 2 ,
()

j jj

i i
e eI A e

α β β αα β β α
α β α β

+− ⎡ ⎤− + −= ⎢ ⎥−⎣ ⎦
r (11)

where

 1 ˆ ˆ(),kα = −12 iv r p (12)
 1 ˆ ˆ().kβ = −13 iv r p (13)

The expression (11) has the following singular
values:

3
2

1ˆ0, 0 () 2 ,
jj

i i
j eI A e

β ββα β
β

− + −= ≠ ⇒ =r (14)

3
2

1ˆ0, 0 () 2 ,
jj

i i
j eI A e

α ααα β
α

− + −≠ = ⇒ =r (15)

3
2

1ˆ0 () 2 ,
jj

i i
j eI A e

α ααα β
α

−− −= ≠ ⇒ =r (16)

ˆ0 () .i iI Aα β= = ⇒ =r (17)

REFERENCES
[1] C. Uluisik, G. Cakir, M. Cakir, and L. Sevgi,

“Radar cross section (RCS) modeling and
simulation, part 1: a tutorial review of definitions,
strategies, and canonical examples,” Antennas and
Propagation Magazine, IEEE, vol. 50, no. 1, pp.
115-126, Feb. 2008.

[2] J. A. M. Lorenzo, A. G. Pino, I. Vega, M. Arias,
and O. Rubiños, “ICARA: induced-current analysis
of reflector antennas,” Antennas and Propagation
Magazine, IEEE, vol. 47, no. 2, pp. 92-100, April
2005.

[3] J. G. Meana, J. A. M. Lorenzo, F. Las-Heras, and
C. Rappaport, “A PO-MoM comparison for
electrically large dielectric geometries,” Antennas
and Propagation Society International Symposium,
2009. APSURSI '09. IEEE, 1-5 June 2009.

[4] J. G. Meana, J. A. M. Lorenzo, F. Las-Heras, and
C. Rappaport, “Wave scattering by dielectric and
lossy materials using the Modified Equivalent
Current Approximation (MECA),” Transactions on
Antennas and Propagation, IEEE, vol. 58, no. 11,
pp. 3757-3761, 2010.

[5] D. Daroui and J. Ekman, “Parallel Implementations
of the PEEC Method,” ACES Journal, vol. 25, no.
5, pp. 410-422, 2010.

[6] R. J. Burkholder, Ç. Tokgöz, C. J. Reddy, and W.
O. Coburn, “Iterative Physical Optics for Radar
Scattering Predictions,” ACES Journal, vol. 24, no.
2, pp. 241-258, 2009.

[7] S. R. Rengarajan and E. S. Gillespie, “Asymptotic
approximations in radome analysis,” Transactions
on Antennas and Propagation, IEEE, vol. 36, no.
3, pp. 405-414, 1988.

[8] R. E. Hodges and Y. Rahmat-Samii, “Evaluation of
dielectric physical optics in electromagnetic
scattering,” in Proceedings 1993 Antennas and
Propagation Society International Symposium,
EE.UU., June 1993.

[9] F. Sáez de Adana, I. González, O. Gutiérrez, P.
Lozano and M. F. Cátedra, “Method based on
physical optics for the computation of the radar

850 ACES JOURNAL, VOL. 25, NO. 10, OCTOBER 2010

cross section including diffraction and double
effects of metallic and absorbing bodies modeled
with parametric surfaces,” Transactions on
Antennas and Propagation, IEEE, vol. 52, no. 12,
pp. 3295-3303, 2004.

[10] B. B. Fraguela, “Optimization of the use of the
memory hierarchy,” Course Notes, Department of
Electronics and Systems, University of A Coruña,
Spain, October 2009.

[11] G. Wu, J. Xu, Y. Dou, and M. Wang,
“Computation rotating for data reuse,” Computer
Systems Architecture Conference, 2008. ACSAC
2008. 13th Asia-Pacific. Hsinchu, August 2008.

[12] D. H. Staelin, A. W. Morgenthaler, and J. A. Kong,
Electromagnetic Waves, USA: Prentice Hall, 1994.

[13] C. A. Balanis, Advanced Engineering
Electromagnetics, 1st ed. New York, USA: John
Wiley and Sons, 1989.

[14] M. Arias, O. Rubiños, I. Cuiñas, and A. G. Pino,
“Electromagnetic scattering of reflector antennas
by fast physical optics algorithms,” Recent Res.
Devel. Magnetics, no. 1, pp. 43-63, 2000.

[15] G. Krawezik and F. Cappello, “Performance
comparison of MPI and OpenMP on shared
memory multiprocessors,” Concurrency
Computat.: Pract. Exper., vol. 18, no. 1, pp. 29-61,
Oct. 2005.

Hipólito Gómez-Sousa received the
M.S. degree in telecommunications
engineering from the University of
Vigo, Vigo, Spain, in 2009.

Since 2009, he has been with the
Department of Signal Theory and
Communications, University of Vigo.
His current research interests are on
computational electromagnetism, THz

sensing systems, and quantum cryptography.

José Ángel Martínez-Lorenzo (S’03–
M’05) was born in Madrid, Spain, in
1979. He received the M.S. and Ph.D.
degrees in telecommunications
engineering from the University of
Vigo, Vigo, Spain, in 2002 and 2005,
respectively.

He was a Teaching and Research
Assistant with the University of Vigo

from 2002 to 2004. He joined the faculty at the University of
Oviedo, Gijón, Spain, in 2004, where he was an Assistant
Professor with the Department of Signal Theory and
Communications until 2006. During the spring and summer of
2006, he was a Visiting Researcher with the Bernard Gordon
Center for Subsurface Sensing and Imaging Systems
(Gordon-CenSSIS), Northeastern University, Boston, MA. He
was appointed as a Research Assistant Professor with the
Department of Electrical and Computer Engineering,
Northeastern University. He is currently a Ramon y Cajal
researcher at the University of Vigo. He has authored over 80

technical journal and conference papers. His research is
geared toward the understanding, modeling, and quantitative
prediction of complex electromagnetic problems with special
application to security sensing systems, communication
systems, and biomedical systems.

Oscar Rubiños-López obtained the
M.S. and Ph.D. degrees in
telecommunication engineering from
the Universidad de Vigo in 1991 and
1997, respectively.

He joined the Universidad de
Vigo in 1991 and is currently an
associate professor with the Dept. of
Signal Theory & Communications at
the Universidad de Vigo. From 2001 to

2006, he held the position of Vice-President of University
Extension (2001-2002) and for University Extension and
Students at the University of Vigo. His research interests
include: the analysis and design of broadband antennas,
numerical simulation of applied electromagnetic problems,
terahertz technology for electromagnetic sensing applications,
satellite systems and wireless communications

Javier Gutiérrez-Meana was born in
Gijón, Spain, in 1982. He received his
M.S. and Ph.D. degrees in electrical
engineering from the University of
Oviedo (Spain) in 2005 and 2010,
respectively.

He joined the R and D
department of CTIC Foundation in
2005, and since 2006, he is a Research
Assistant with the Area of Theory of

Signal and Communications (University of Oviedo). He was a
Visiting Researcher at The Gordon CenSSIS – Northeastern
University (Boston) in 2008. His interests and research
studies are focus on the evaluation of electromagnetic
coverage in rural/urban electrically large scenarios by means
of high frequency techniques.

María Graña-Varela received the
M.S. and Ph.D. degrees in
telecommunication engineering from
the University of Vigo, Spain, in 2000
and 2009, respectively.

From 2000 to 2005, she took part
in several projects related to signal
propagation and antennas design,
initially with a research fellowship in

the University of Vigo and in the Polytechnique University of
Madrid and, from 2002, working in a Spanish
telecommunication company as a network planning engineer.
From 2005 to nowadays, she is with the Group of Antennas of
the University of Vigo, involved in projects to design
antennas for spatial communications. Her research interests
include reconfigurable reflector antennas and computational
electromagnetism.

851GÓMEZ-SOUSA, ET. AL: IMPROVING MEMORY HIERARCHY IN MECA METHOD

Borja González-Valdés was born in
Gijón, Spain, in 1981. He received the
B.S. and M.S. degree in 2006 in
telecommunications engineering from
the University of Vigo.

Since this moment to present, he
has been research grant holder in the
Department of Signal Theory and
Communications, University of Vigo,

Spain. During 2008 and 2009, he was a Visiting Researcher at
the CenSSIS (The Bernard M. Gordon Center for Subsurface
Sensing and Imaging Systems), Northeastern University,
Boston.

He received his Ph.D. in electromagnetic engineering in
2010. His current research interest is geared toward the
modeling and simulation of electromagnetic systems, with
special application to high-performance reconfigurable
reflectors.

Marcos Arias-Acuña was born in
Vigo, Spain, on June 1, 1968. He
received the Ingeniero de
Telecomunicacion degree and Doctor
Ingeniero de Telecomunicacion degree
from the University of Vigo in 1991
and 1997, respectively.

He is a Profesor Titular since
1998 and has been with the Department

of Signal Theory and Communications teaching radio
communications since 1992. He has worked in projects
related with antennas for satellite and radioastronomy and
communication systems such DVB-T, LMDS, and UMTS.
His research interests include:
- Reflector antennas, feeder for reflector antennas (arrays,
horns...), shaped reflectors.
- Communication systems.
- High frequency techniques for modeling electromagnetic
problems.

852 ACES JOURNAL, VOL. 25, NO. 10, OCTOBER 2010

