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Abstract ─In this paper, we present fast and 
accurate solutions of large-scale scattering 
problems involving three-dimensional objects with 
arbitrary shapes using parallel finite element-
boundary integral method (FE-BI). Particularly, an 
efficient parallel preconditioner is constructed 
with both the finite-element matrix and the near-
field part of the boundary integral equation 
operator for the ill-conditioned linear system 
formulated by the FE-BI. With an efficient 
parallelization of FE-BI, scattering problems that 
are discretized with millions of unknowns could 
be easily solved on distributed-memory 
computers. The numerical results are presented to 
demonstrate the accuracy and efficiency of the 
proposed method. 
 
Index Terms - Finite element boundary integral 
method, parallelization, multilevel fast multipole 
method, scattering problems. 
 

I. INTRODUCTION 
The finite element boundary integral method 

(FE-BI) [1-5] provides fast and accurate solutions 
for three-dimensional electromagnetic scattering 
from complex geometries, which may be 
comprised of both conductors and dielectric 
media. The method divides the analyzed objects 
into two regions, one is the interior region and 
another is the exterior region. The field in the 
interior region is formulated using the finite-
element method (FEM) and the field in the 
exterior region is represented by a boundary 
integral equation (BIE). The interior and exterior 
fields are then coupled by the field continuity 

conditions. In the FE-BI method, the final 
coefficient matrix is made up of a complex dense 
BIE sub-matrix and a complex sparse FEM sub-
matrix. The multilevel fast multipole method 
(MLFMM) [6-10] is used to speed up the matrix-
vector product (MVP)  for the dense BIE part 
when the electrically large object is analyzed, 
which reduces the memory requirement from 
O(N2) to O(NlogN) and the computational 
complexity from O(N3) to O(NlogN), where N is 
the number of unknowns belongs to BIE part. 
When the FE-BI is combined with MLFMM, the 
coefficient matrix can be fast built when a large 
object is analyzed. Unfortunately, the FE-BI 
method suffers from a very slow convergence rate 
with the iterative solvers since the coefficient 
matrix arising from FE-BI is badly ill-conditioned. 
This bottleneck severely limits the capability of 
the FE-BI method since the iterative methods are 
the only choose for the large-scale problems. To 
break this bottleneck, many preconditioners have 
been developed to accelerate the convergence rate, 
such as the diagonal, block-diagonal, but they are 
not effective enough to yield a highly efficient 
solution. In [11], Liu and Jin proposed to use the 
FEM-absorbing boundary condition (ABC) matrix 
as the precondition for the FE-BI matrix equation. 
However, about 0.05 λ distance should be set 
between both the absorbing boundary and the 
scattering objects to improve the efficiency of the 
preconditioner. This will bring an increase of 
unknowns for the increscent calculation domain, 
which reduces the efficiency of the FE- ABC 
preconditioner. In this paper, an efficient 
preconditioner is constructed by the finite-element 
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part and the near-field value terms of the boundary 
integral, both can be easily obtained from the FE-
BI matrix with no additional cost and memory 
requirement since the main contribution of the 
impedance matrix for the boundary integral is 
given by the near-field part. In our experience, the 
convergence rate of solving the FE-BI matrix is 
significantly accelerated after equipping this 
preconditioning technique. 

Although the preconditioned FE-BI has been 
applied to a variety of electromagnetic problems 
with remarkable success, accurate solutions of 
many real-life problems require discretization with 
more than millions of unknowns, leading to large-
scale matrix equations, which can not be solved on 
a single personal computer. In order to solve large 
problems, it is necessary to parallelize the FE-BI 
code and implement on distributed computers. 
However, it is not a trivial to design a high 
efficient parallelization scheme because of the 
complicated structure of the FE-BI matrices. 
Simple parallelization techniques usually fail to 
provide efficient solutions, due to communications 
among processors, poor loading-balance of the 
work. In this work, the FE-BI matrix is divided 
according to the features of the sub-matrices, 
which making it possible to compute and store 
only a small part of matrix in each computer and 
take full advantage of the parallelization 
computing. Especially, a series of implementation 
efforts previously developed for parallelizing the 
MLFMM in [12-19] are adopted to improve the 
parallelization efficiency of the BIE part, which is 
the most important point for the whole 
parallelization implementation. At the same time, 
the precondition matrix is constructed and 
factorized in parallelization. 

The remainder of this paper is organized as 
follows. Section II gives a brief introduction to the 
FE-BI, together with an introduction of the novel 
preconditioner for the FE-BI. The parallization of 
FE-BI is also investigated in this part in detail. 
Section III presents the numerical results to 
demonstrate the accuracy and efficiency of the 
proposed method. Finally, some conclusions are 
given in section IV. 

 
II. THEORY 

Consider the problem of electromagnetic wave 
scattering by an inhomogeneous object 

characterized by relative permittivity rε and 

permeability rµ . The object is excited by an 

incident field ( )iE r  and the total field ( )E r  

comprises the sum of the incident field ( )iE r and 

the scattered field ( )sE r . To solve this problem 
with FE-BI, we first introduce a surface S to 
enclose the object and divide the object into an 
interior region and an exterior region. We employ 
the FEM to deal with the interior region. The 
exterior region is formulated using the BIE. The 
field inside S can be formulated into an equivalent 
variational problem with the functional given by  

( ) ( )( ) ( )( ) ( ) ( )2
0

0

1 1

2
ε

µ
 

= ∇× ∇× − 
 

∫∫∫  rV
r

F k dV
jk

E E r E r E r E r

      ( ) ( )( )0η+ ∫∫ 


sS

dSE r J r ,      (1) 

where 0k  and 0η  denote the free-space wave 
number and impedance, respectively. V denotes 
the volume enclosed by S, n̂  denotes the outward 
unit vector normal to S, 0K  is the free-space wave 
number. Using tetrahedron-based  edge elements 
to expand ( )E r and Rao-Wilton-Glisson (RWG) 

[20] basis functions to expand sJ  

1=

= ∑
M

i i
i

EE W ,  
1=

= ∑
sN

s i i
i

J fJ .           (2) 

Substituting (2) into (1), we obtain the matrix 
equation 

I
II IS

S
SI SS

S

0 0

0

 
     =    

    
 

E
K K

E
K K B

J
,           (3) 

where IE  is a vector containing the discrete 

electric field inside V, SE , and sJ are the vectors 
containing the discrete electric and magnetic field 
on S. [ ]IIK , [ ]ISK , [ ]SIK , [ ]SSK , and [ ]B  denote the 

corresponding highly sparse FEM matrices, [ ]IIK  

and [ ]SSK are symmetric matrices and 

[ ] [ ]IS SI

T=K K ,where the superscript T denotes the 

transpose. 
Equation (3) cannot be solved unless a relation 

between SE and sJ is established. Such a relation is 
provided by BIE for the exterior region, whose 
discretization yields 

S S[ ]{ } [ ]{ } { }+ =P E Q J b .            (4) 
In (4), { }b  is a vector related to the incident 
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field. [ ]P  and [ ]Q   are generated by BIE. 
Combining (3) and (4) together, we obtain the 
following matrix equation 

II IS I

SI SS S

S

0 0

0

0

     
     =    
         

K K E
K K B E

bP Q J
.           (5) 

The generation of (3) using FEM is standard, the 
generation of (4) using the method of moment 
(MoM) [20-21] can take many different forms. 
The basic equations for generating (4) are the 
electric-field integral equation (EFIE) is given by  

1
( ) ( ) ( ) ( )

2
= + −inc

s sE r E r L J K M ,         (6) 

and the magnetic-field integral equation (MFIE) is 
given by  

1
( ) ( ) ( ) ( )

2
= + +inc

s sH r H r M JL K ,         (7) 

where J and M are related to the fields on S by 

0 ˆη= ×nsJ H and ˆ= ×s nM E , respectively, and 

( ,inc incE H ) denote the incident fields. The operators 
L  and K  are defined as  

0 0( ) ( ) ( , )d′ ′ ′= +∫∫S
jk G SL X X r r r  

0
0

( ) ( , )d′ ′ ′ ′∇ ⋅ ∇∫∫S

j G S
k

X r r r ,      (8) 

0( ) ( ) ( , )d′ ′ ′= ×∇∫∫S
G SK X X r r r .                   (9) 

However, each of them suffers from the problem 
of interior resonance and fails to produce accurate 
solutions at and near the resonant frequencies. To 
eliminate this problem, one has to combine EFIE 
and MFIE to obtain a combined field integral 
equation (CFIE). In this paper, the TE-NH is 
chosen which produces the best conditioned 
matrix for (5), substitute (2) into (6), we obtain the 
TE formulation 

0

1
( ) ( , )d

2
 ′ ′ ′= ⋅ − − ×∇ 
 ∫∫ ∫∫ 

mn m n nS S
P r G S dSf w f r r  

0

1
( , )d

2
′ ′= − + ⋅ ×∇∫∫ ∫∫ 

mn m nS S
B G S dSf f r r     (10) 

0 0 0
0

( , )d ( ) ( , )d
 

′ ′ ′ ′ ′ ′= ⋅ − − ∇ ⋅ ∇ 
 

∫∫ ∫∫ ∫∫  
mn m n nS S S

jQ jk G S G S dS
k

f f r r f r r r
 

0 0 ( , )d′ ′= − ⋅ −∫∫ ∫∫ 
m nS S

jk G S dSf f r r , 

0
0

1
( ) ( , )d′ ′ ′ ′∇ ⋅ ∇ ⋅∫∫ ∫∫ 

m nS S
G S dS

jk
f f r r r .  (11) 

And from (7), the NH formulation 

0

1
ˆ, ( ) , ( , )d

2mn m n m nS
Q r n G Sf f f f r r′ ′= + × ×∇∫∫ , (12) 

0 0ˆ , ( , )d′ ′= − × −∫∫mn m nS
P n jk G Sf f r r  

                     0
0

( ) ( , )d′ ′ ′ ′∇ ⋅ ∇∫∫ nS

j G S
k

f r r r .     (13) 

The computational complexity of (5) consists of 
two parts: the part associated with FEM is ( )O N  

and the part related to BIE is 2( )sO N , where sN  

denotes the number of unknowns on the truncation 
boundary. The dense matrices [ ]P  and [ ]Q  
generated by the BIE are bottleneck of the FE-BI 
method, which severely limit the capacity of the 
FE-BI method in dealing with electrically large 
objects. Fortunately, this problem can be solved 
iteratively, where the required the MVP are 
performed efficiently by the MLFMM, which 
reduces the memory requirement and the 
computational complexity to ( log )s sO N N  for the 
BIE. Conventionally, to implement the MLFMM, 
an octree first needs to construct. The entire object 
is first enclosed in a large box, which is divided 
into eight smaller boxes. Each sub-box is then 
recursively subdivided into eight smaller cubes 
until the edge length of the finest cube is about 
half of a wavelength. The interaction between 
these boxes can be divided into two cases: two 
cubes are near each other sharing at least one edge 
point, the interaction between the two groups are 
computed by MoM. Otherwise, two cubes are 
well-separated from each other if the ratio of the 
cube-center-distance to the cube size is greater 
than or equal to 2. The interactions between boxes 
are calculated using the MLFMM. 

The basic formulae to calculate the matrix 
entries for the far groups in MLFMM are given by 

 

2 21
( ) )
λ

′′ ′= ⋅ ⋅
2 ∫ 

P
mmij im mm jmP V T k r V d k（ ,      (14) 

 

2 21
( ) )
λ

′′ ′= ⋅ ⋅
2 ∫ 

Q
mmij im mm jmQ V T k r V d k（ ,     (15) 

where 


(2)
0

0

ˆˆ) ( ) (2 1) ( ) ( )′′ ′ ′
=

⋅ = − + ⋅ ⋅∑

L
l

mmmm l mm l mm
l

T k r j l h k r P r k（ , (16) 

0 ˆ ˆ ˆ ˆ[ ( ) ( )]− ⋅= − × + − ⋅ ×∫ imjP
im i iS

V e k kk n dSk r f I f ,     (17) 

( )0 ˆ ˆ ˆ ˆ( )− ⋅  = − − − × × ∫ imjQ
im i iS

V e kk k n dSk r I f f ,    (18) 

0

'
′⋅= ∫ jmj

jm jS
V e dSk r f .                                   (19) 

Although the MLFMM for the BIE part has 
reduced the complexity of MoM from O(N2) to 
O(NlogN), allowing the solution of large problems 
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with limited computational resources compared 
with the MoM. However, for problems with 
millions of unknowns, it is still not easy to solve it 
with FE-BI on a single processor. Thus, it is 
helpful to increase computational resource by 
assembling parallel computing platforms and, at 
the same time, by paralleling FE-BI. 

 
A. Novel preconditioner in FE-BI 

For equation (5), there are two approaches to 
solve it. One is the direct solver [22]; the other is 
the iterative solver. For large-scale problems, it is 
impractical to solve the matrix equation with a 
large number of unknowns using the direct solver. 
This difficulty can be circumvented by solving the 
matrix equation using the Krylov subspace 
iterative method, which requires the MVP in each 
iteration step. In the past, several iterative 
methods, including the conjugate gradient (CG), 
the biconjugate gradient (BCG), the stabilized 
biconjugate gradient (BCGS), and the generalized 
minimal residual (GMRES) have been employed. 
Unfortunately, since the BIE produces a dense 
matrix, the final FE-BI system matrix consists of a 
partly-full matrix and a partly-sparse matrix. The 
FE-BI matrix is usually ill-conditioned and 
requires a large number of iterations to reach 
convergence.  Therefore for electrically large 
objects, iterative solvers should be adopted with 
efficient preconditioners. There are many 
preconditioners that have been developed to speed 
up the convergence rate of the GMRES solution, 
e.g. the block-diagonal can help to partially 
alleviate this difficulty, but they are not effective 
enough to yield a highly efficient solution. In [11], 
a FE-ABC preconditioner has been proposed and 
proven to be highly efficient for the FE-BI. 
However, a certain distance should be set between 
the absorbing boundary and the scattering objects 
to improve the efficiency of the preconditioner. 
This will bring the increase of the unknowns for 
the FE-BI. In this paper, an efficient 
preconditioner is constructed by the finite-element 
part and the near-field part of the boundary 
integral, both can be easily obtained from the 
matrix of the FE-BI with no additional computing 
cost and memory requirement since the main 
contribution of the impedance matrix for the 
boundary integral is given by the near-field part. 
Therefore, the preconditioning matrix is 
constructed by both the FEM matrix and the near-

field part in the sparse pattern of the FEM matrix. 
Numerical results are presented to show the high 
effectiveness of the proposed method. 

In this section, we consider solving the FE-BI 
matrix equation (5) with the MLFMM accelerated 
by the Krylov iterative method. In order to speed 
up the convergence rate of the Krylov iterative 
method, the preconditioning matrix 1−M  is used to 
transform (5) into an equivalent form 

1 1− −=M Ax M b ,                 (20) 
where 

II IS

SI SS

0

0

 
 =  
  

K K
A K K B

P Q
  

I

S

S

 
 =  
  

E
x E

J
  

0

0

 
 =  
  

b
b

. 

With 1−=A M A  and 1−=b M b , equation (20) can 
be written as the following form 

= Ax b .                             (21) 
1−M  is a matrix for preconditioning the matrix A  

from the left. The purpose of preconditioning is to 
make the condition number of the matrix A  better 
than the original matrix A . Thus, the Krylov 
iterative method for the equation (21) can get a 
fast convergence. 

An effective preconditioner M  [22-23] should 
be a good approximation of matrix A  and easy to 
construct. Since the main contribution of the 
impedance matrix for the boundary integral is 
given by the near-field part. The preconditioner is 
constructed by the finite-element part and the 
near-field of the BIE matrix in sparse pattern 
as shown in (22); both can be easily obtained 
from the FE-BI matrix with no additional 
computing cost and memory requirement.  

II IS

SI SS

0

0 ' '

 
 =  
  

K K
M K K B

P Q
.             (22) 

Then (20) can be written as follows 
1

II IS II IS

SI SS SI SS

0 0

0 ' ' 0

−
     

    
    
         

I

S

S

K K K K E
K K B K K B E

P Q P Q J

 

1

II IS

SI SS

0 0

0

0 ' '

−
   

  =   
     

K K
K K B

bP Q
.   (23) 

In order to reduce the computational complexity 
of the MVP, the second matrix in the left terms of 
(23) can be replaced according to the following 
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equation 
 

II IS II IS

SI SS SI SS

0 0

0 0 ' '

   
   = −   
      

K K K K
K K B K K B

P Q P Q

 

0 0 0

0 0 0

0 ' '

 
 
 
 − − 

　　

P P Q Q
  ,            (24) 

and (24) can be sequentially transformed to the 
following form 

1

II IS

SI SS

0 0 0 0

0 0 0

0 ' '0 ' '

−    
    +    
    − −   

　　

K K
K K B

P P Q QP Q
Ι  

1

II IS

SI SS

0 0

0

0 ' '

−
   

  =   
     

B
K K
K K

bP Q
,          (25) 

where 'P  and 'Q  stand for the near-field part 
drawing from the total matrix of boundary integral 
P  and Q  in the sparse pattern of FEM matrices 

B  and SSK , respectively.  
For sequential implementations of the FE-BI 

running on a single processor, the calculation of 
1−M  can be obtained by the UMFPACK strategy 

[24]. However, for large-scale problems, the direct 
solver 1−M  may require prohibitive memory and 
the time used to construct the matrix 1−M will be 
very long. Fortunately this cost can be alleviated 
by parallelization. In this paper, we use the parallel 
LU factorization to construct the preconditioner 
matrix 1−M , after decomposing the matrix M  in 
the form of = M L U . The preconditioning 
operation is performed in each step by solving

= L U v w , the preconditioning operation 
1−=v M w  is computed by solving the linear 

system = L U v w , it is performed at two distinct 
steps: solve =Lx w  and =Uv x  successively. This 
two-step is processing in parallization. We call this 
preconditioning iteration as a forward and 
backward preconditioning iteration. 

 
B. Efficient parallelization of FE-BI matrix 

Because of the complicated structure of the FE-
BI matrix, parallelization of FE-BI is not trivial. 
Simple parallelization schemes usually lead to 
inefficient solutions due to dense communications 
and unbalanced distribution of the workload 
among processors. For high efficiency 

parallelization, two parts must be considered in 
detail. The first part is to partition the MoM 
matrices among the distribute computers. The 
second part is to construct the preconditioner 
matrices among the distribute computers. For the 
FEM matrix [ ]IIK , [ ]ISK , [ ]SIK , [ ]SSK , and [ ]B , 

which denotes the corresponding highly sparse 
FEM matrix. This estimation needs very small 
memory and CPU time; thus, all the FEM matrices 
are computed on one processor. 

For the surface MoM matrices generated by the 
BIE are a bottleneck of the FE-BI, which severely 
limits the capacity of the FE-BI method in dealing 
with electrically large objects. Although the 
MLFMM allows for it to solve large problems 
with limited computational resources, to further 
improve the capacity of the MLFMM for 
electrically large objects, one of robust ways is to 
increase computational resources by assembling 
parallel computer platforms and, at the same time, 
by parallelizing MLFMM. 

The efficiency of the parallel FE-BI is 
determined by the efficiency of the parallel BIE 
part. In the past few years, a series of 
implementation tricks have been developed for 
efficiently parallelizing the MLFMM, these tricks 
are different, but the key issues in those tricks in 
parallelizing MLFMM are load-balancing and 
minimizing the communications between the 
processors. To obtain an efficient parallelization of 
MLFMM, several issues must be carefully 
considered to distribute the task equally among the 
processors. In this paper, we utilize different 
partitioning strategies for the lower and higher 
levels of the tree structure. It is natural that the 
parallel approach for the fine level is to distribute 
the boxes equally among processors, where the 
number of boxes is much larger than the number 
of processors. But it is difficult to achieve good 
load-balancing for the coarse level with this 
parallel approach, where the number of boxes is 
smaller than the number of processors. However, 
since the box size of the coarse level is big, and 
the number of far-field patterns for the MLFMM is 
large, we can partition the far-field patterns 
equally among all processors while replicating the 
boxes in every processor as paper [16]. Using this 
scheme for the parallel MLFMM in the far-field, 
good load balancing can be achieved. 

The interaction matrix in MLFMM is classified 
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into a near-field interaction matrix and a far-field 
interaction matrix. After distributing the boxes to 
each processor in the finest level, the near-field 
and the far-field interaction lists can be set up in a 
parallel way. The near-field interaction matrix are 
calculated directly and stored in memory. For the 
far-field, the interaction is calculated in a cluster-
by-cluster manner. The computation in MLFMM 
is done in three stages called the aggregation, 
translation and disaggregation stage.  
Aggregation stage: The far-field interaction 
begins with aggregating basis functions at the 
finest level to obtain the radiation pattern. Each 
processor calculates and stores the radiation and 
receiving patterns of the basis and testing 
functions included in its local box. Then each 
processor shifting the radiation pattern to the 
center of the box in the second finest level, and 
finally interpolating the deficient radiation pattern 
to obtain the radiation pattern of the box in the 
second-finest level. This procedure repeats until 
the shared levels. In the shared levels, each box is 
assigned to the same processor. The far-field 
pattern of each box is distributed equally among 
processors. In the distributed levels, even though a 
local interpolation is used, some of the far-field 
patterns may locate in other processors. Therefore 
one-to-one communications are needed to get the 
required data. 
Translation stage: The translation stage is one of 
the most important stages in the parallelization 
MLFMM; since the boxes are distributed among 
the processors; one to one communications are 
required between the processors for the translation 
stage. To eliminate this overhead, each processor 
is loaded with extra boxes called the ghost boxes. 
For example, if box i  at processor a  needed the 
far-field samples of box j  at processorb , maybe 
another box at processor a  also needed the far-
field samples of box j , to reduce the 
communication between the processors; we 
allocate space for the box j  at processor a . When 
the far-field samples of box j  is received by 
processor a , we store it in the memory, this ensure 
that the same data is not transferred more than 
once. In the shared levels, the far-field samples of 
each cluster are distributed equally among the 
processors. Therefore, there is no need for 
communication between the processors at the 
translation stage in the shared levels. 

Disaggregation stage: The disaggregation stage is 
the generally the inverse of the aggregation stage, 
the incoming fields are calculated at the centre of 
each box from the top of the tree structure to the 
lowest level using the anterpolation. Some of the 
far-field samples obtained from the anterpolation 
operation should be sent to other processors in the 
distributed levels, Similar to the communications 
during the aggregation stage, this procedure 
repeats until the finest level. 
 

III. NUMERICAL RESULTS  
In this section, several numerical examples are 

presented to demonstrate the efficiency of the 
proposed method. All experiments are performed 
on two distributed-memory computers; each 
computer involves 8 processors, each processor 
has 6 gigabytes (GB) of memory with 3.0GHz 
clock rate. The resulting linear systems are solved 
iteratively by the GMRES (30) solver with a 
relative residual of 310−  in double precision. 

 

A. The accuracy of the proposed method   

 
Fig. 1. A PEC sphere coated with a single-layer 
dielectric. 
 

First, the proposed method is used to analyze 
scattering from a perfect conductor (PEC) sphere 
having a diameter of 16 λ , the sphere is coated 
with a 0.1m thick dielectric layer having a relative 
permittivity of ε = −2r i  and µ = 1r  as shown in 
Fig. 1, iS  is the surface of the PEC sphere. A 
400MHz plane wave is incident at 0θ =inc , 0φ =inc  

and the observed scattering angles are 0 ~ 180θ = 

s  

at 0φ = 

s . During the FE-BI calculation for this 
example, the boundary integral is carried out on 
the outer surface of the dielectric sphere. The total 
number of unknowns is 3,540,000, consisting of 
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2,710,000 for the finite-element and 830,000 for 
the boundary integral. We first assume that the 
sphere coated with an air, thus, the bistatic radar 
cross section (RCS) of the coated sphere is equal 
to a PEC sphere. As shown in Fig. 2, the 
numerical result of the bistatic RCS of the sphere 
is in a good agreement with the Mie solution. 
Figure 3 shows the bistatic RCS of the sphere 
coated with dielectric, the dielectric is 
characterized by ε = −2r i  and µ = 1r . It can also 
be found that there is a good agreement with the 
Mie solution. It involves 52 iterations for this 
problem to reach convergence. 

Solutions are performed on 1, 4, 8, 16, and 32 
processors, respectively. Table I lists the total 
processing times including the setup time and 
iterative solution parts, and the parallelization 
efficiency obtained for 4, 8, 16, and 32 processors 
with respect to 1 processor. Ideally, the speed of a 
simulation with P processors is P times higher 
compared with a single processor and the 
efficiency is 100%. However, from Table I we can 
see that when the number of processors increases, 
the efficiency of the FE-BI decreases. This is 
because with the number of processors increases, 
although the time for matrix computing decreases 
correspondingly, the data communication time in 
the translation stage between the computer 
increases quickly when the number of processors 
increases. This becomes the bottleneck in the 
parallelization of FE-BI. 

 

Fig. 2. Bistatic RCS of the conduct sphere at 400 
MHz. 
 

Fig. 3. Bistatic RCS of the coated sphere at 400 
MHz. 

 

Table I: Total processing time and parallelization 
for the solution of the sphere discretized with 
3,540,000 unknowns 

Sphere (Radius:16 λ , Number of unknowns: 3,540,000) 
Number of 
Processors 

1 4  8  16  32 

Total time 
(mintues) 

219 58 33 18 11 

Efficiency 100% 94% 83% 76% 62% 
 

The second geometry is a coated cylinder 
with a diameter of 10λ and 20 λ  high, the cylinder 
is coated with 0.1m thick dielectric layer having a 
relative permittivity of ε = −2r i  and µ = 1.r  A 

500MHz plane wave is incident at 0incθ =  and 

0incφ = , and the observed scattering angles are 

0 ~ 180sθ =  at 0sφ = . After discretisation, the 
number of unknowns is 3,100,000, consisting of 
2,260,000 for the finite-element, and 840,000 for 
the boundary integral. We first consider the 
cylinder coated with air, so the RCS of the coated 
cylinder is equal to a PEC cylinder, Fig. 5 shows 
the bistatic RCS of the cylinder coated with 
dielectric ε = −2r i  and µ = 1.r  The numerical 
results of the bistatic RCS are compared with the 
body of revolution (BOR). It can be seen from Fig. 
4 and Fig. 5 that there is a good agreement 
between the parallel FE-BI and BOR. It involves 
44 iterations for this problem to reach 
convergence. Table II lists the total processing 
times including the setup time and iterative 
solution parts, and the parallelization efficiency 
obtained for 4, 8, 16, and 32 processors with 
respect to 1 processor. From the two examples 
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above, we can see that the parallelization of the 
FE-BI provides an efficient approach to solve 
large-scale electromagnetic scattering problems. 

 

Fig. 4. Bistatic RCS of the PEC cylinder at 500 
MHz. 
 

Fig. 5. Bistatic RCS of the coated cylinder at 500 
MHz. 
 
Table II: Total processing time and parallelization 
for the solution of the cylinder discretized with 
3,100,000 unknowns 

Cylinder (Diameter of 10 λ and 20 λ high , Number of 
unknowns: 3,100,000) 

Number of 
Processors 

1 4  8  16  32 

Total time 
(mintues) 

171 45 26 14 9 

Efficiency 100% 95% 82% 76% 59% 

B. Solution of the real-life problem 
To further show the capacity of our parallel FE-

BI code, finally, we present the solutions of a real-
life problem involving an airplane as shown in 
Fig. 6. The airplane is coated with a 0.02 
wavelength thick dielectric layer having a relative 
permittivity of 4rε =  and 2r iµ = − . A 600MHz 

plane wave is incident at 120θ = 

inc , 270φ = 

inc  

and the observed scattering angles are 120θ = 

s  at 

0 ~ 360φ = 

s . The bistatic RCS of the coated 
airplane is presented in Fig. 6. After the setup, it 
takes about 24 minutes, and the iterative solution 
involves 49 iterations to solve the problem on 16 
processors. 

 

Fig. 6. Bistatic RCS of the coated airplane at 600 
MHz. 
 

IV.    CONCLUSIONS 
In this paper, we consider fast and accurate 

solutions of large-scale scattering problems 
discretized with millions of unknowns using a 
parallel FE-BI on distributed-memory computers. 
The parallel near-field preconditioner is used to 
accelerate the convergence speed of the FE-BI 
matrix iteration. The capacity of the parallel FE-BI 
has been demonstrated by computing several 
coated geometries, i.e. a sphere, a cylinder, and an 
airplane. From the numerical results, we can see 
that the proposed parallel FE-BI is efficient for 
solving the scattering of electrically large objects. 
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